vignettes/module_development_jamovi.Rmd
module_development_jamovi.Rmd
Official documentation is here: https://dev.jamovi.org/
Briefly:
Use R 3.6.3
Install jamovi from this link: https://www.jamovi.org/download.html Get the latest one 1.2.19
Install jmvtools package with:
install.packages('jmvtools', repos=c('https://repo.jamovi.org', 'https://cran.r-project.org'))
locate jamovi bin folder via this: jmvtools::check("C://Program Files//jamovi//bin")
I recommend changing folder name from default jamovi 1.2
to jamovi
Fork and Clone this repo: https://github.com/sbalci/ClinicoPath
inside this repo folder in R jmvtools::install()
it will produce a file named ClinicoPath.jmo and install this module to jamovi
The repo is like an R package except jamovi
folder.
You need to edit R/crosstable.b.R
Just edit the tangram::
code https://dev.jamovi.org/tuts0104-implementing-an-analysis.html https://dev.jamovi.org/tuts0105-debugging-an-analysis.html
In DESCRIPTION file change spgarbet/tangram@0.3.2
to the version you want to test.
run jmvtools::install()
again.
Let me know how it goes :)
https://dev.jamovi.org/tuts0101-getting-started.html
install.packages('jmvtools', repos=c('https://repo.jamovi.org', 'https://cran.r-project.org'))
jmvtools::check()
jmvtools::install()
You can use devtools::install()
to use your codes as a usual R package, submit to github or CRAN. devtools::check()
does not like some jamovi folders so be sure to add them under .Rbuildignore
https://dev.jamovi.org/tuts0102-creating-a-module.html
jmvtools::create(path = "~/ClinicoPathDescriptives")
DESCRIPTION
fileImports
, Depends
, Suggests
, and Remotes
have practically no difference in building jamovi modules. The jmvtools::install()
copies libraries under build folder.
Under Imports
jmvcore
and R6
are defaults.
With Remotes one can install github packages as well. But with each jmvtools::install()
command it tries to check the updates, and if you are online throws an error. An upgrade = FALSE, quick = TRUE
argument like in devtools::install() is not available, yet. One workaround is temporarily deleting Remotes from DESCRIPTION. The package folders continue to remain under build folder.
One can also directly copy package folders from system R package folder (find via .libPaths()
) as well.
R
folderR folder is where the codes are present. There are two files.
function.b.R
https://cran.r-project.org/web/packages/jmv/vignettes/new-syntax.html
jmv::ANOVA(formula = len ~ supp * dose, ToothGrowth)
jmv::ANOVA(ToothGrowth, len, vars(supp, dose))
jmv::ANOVA(..., emMeans = ~ supp + dose:supp)
jmv::ANOVA(ToothGrowth, 'len', c('supp', 'dose'))
In this case, jmv will look for variables in ToothGrowth called ‘dep’ or ‘factors’. This is tidy evaluation. To instruct jmv to use the contents of it’s arguments, rather than the symbol name, prefix them with the !! signifier. For example:
dep <- 'len'
factors <- c('supp', 'dose')
jmv::ANOVA(ToothGrowth, !!dep, !!factors)
varsName <- self$options$vars
data <- jmvcore::select(self$data, c(varsName))
data <- jmvcore::naOmit(data)
jmvcore::toNumeric() https://dev.jamovi.org/tuts0202-handling-data.html
can I just send whole data to plot function? you usually don’t want to, but sometimes it’s appropriate. normally you just provide a summary of the data to the plot function … just enough data for it to do it’s job. but if you need the whole data set for the plot function, then you can specify requiresData: true on the image object. that means the plot function can access self$data. i do it in the correlation matrix for example. there’s no summary i could send … the plot function needs all the data: https://github.com/jamovi/jmv/blob/master/jamovi/corrmatrix.r.yaml#L143 jamovi/corrmatrix.r.yaml:143 requiresData: true
Using “preformatted” result element I get a markdown table output. Is there a way to somehow render/convert this output to html version. Or should I go with https://dev.jamovi.org/api_table.html table api?
so you’re best to make use of the table api … the table API has a lot more features than an md table.
prepare a 00refs.yaml like this: https://github.com/jamovi/jmv/blob/master/jamovi/00refs.yaml
attach references to objects in the .r.yaml file like this:
https://github.com/jamovi/jmv/blob/master/jamovi/ancova.r.yaml#L174
I want a long table. I tried to use following but got error.
Below is my current .r.yaml - name: irrtable title: Interrater Reliability type: Table rows: 1 columns: - name: method title: ‘Method’ type: text - name: subjects title: ‘Subjects’ type: integer - name: raters title: ‘Raters’ type: integer - name: peragree title: ‘Agreement %’ type: number - name: kappa title: ‘Kappa’ type: number - name: z title: ‘z’ type: number - name: p title: ‘p-value’ type: number format: zto,pvalue
so the principle seems right. you initialise the table in the .init() phase (you add rows and columns), and then you populate the table in the .run() phase. however, i notice your .init() function calls .initcTable() which doesn’t actually do anything.
most of the time, .init() isn’t necessary, because the .r.yaml file can take care of it, but sometimes the rows/columns the table should have is a more complex calculation than the .r.yaml allows (and example of this might be the ANOVA table in jmv … there’s not a simple relationship between the number of variables in the option, i.e. dose, supp, and the number of rows in the ANOVA table dose, supp, supp * dose, residuals. so we can’t achieve this with the .r.yaml, and so we set it up in the .init() phase.
finally, there are times where you can’t even determine the number of rows/columns in the .init() phase. you can only decide how many rows/columns are appropriate after you’ve run the analysis. an example of this might be a cluster analysis, where there’s a row for each cluster, but you only know how many rows you need after the analysis has been run. this is the least desireable, because it does lead to the growing and shrinking of the table, but sometimes that’s unavoidable.
so that’s your order of preference. preferably in the .r.yaml, if that can’t work, then do it in the .init(), and as a last resort, you can do it in the .run()
hi, we’ve added “output variables” to version 1.6.16 of jamovi. this allows analyses to save data from the analyses, back to the spreadsheet (for example, residuals). there’s nothing in the 1.6.16 which indicates to users that this functionality is there, and it will only appear when an analysis implements these features. the idea is that we won’t actually release any modules with these features publicly, until an upcoming jamovi 1.8, or 2.0, or whatever. we’ve added these to the 1.6.16 so you can begin developing for the upcoming release.
you begin by specifying an output option in your .a.yaml file, i.e.
# - name: resids
# title: Residuals
# type: Output
# and then add an entry into your .r.yaml file, with a matching name:
# - name: resids
# title: Residuals
# type: Output
# varTitle: '`Residuals - ${ dep }`'
# varDescription: Residuals from ANCOVA
# clearWith:
# - dep
# - factors
# - covs
# - modelTerms
# in this case you’ll see that i’m specifying a formatted string, where the name of the column produced is generated from the dep variable, or dependent variable.
# you can populate the output column with:
# if (self$options$resids && self$results$resids$isNotFilled()) {
# self$results$resids$setValues(aVector)
# }
# sometimes your dataset will have gaps in it, either from filters, or from you calling na.omit() on it, and so if you simply send the residuals from your linear model to $setValues() they won’t be placed in the correct rows. there are two ways to solve this.
call self$results$resids$setRowNums(...) . conveniently, you can simply take the rownames() from your data set (after calling na.omit()) on it, and pass this in here. i.e.
# cleanData <- na.omit(self$data)
# ...
# rowNums <- rownames(cleanData)
# self$results$resids$setRowNums(rowNums)
# alternatively, you can turn your residuals into a data frame, attach the row numbers to that:
# residuals <- ...
# residuals <- data.frame(residuals=residuals, row.names=rownames(cleanData))
# self$results$setValues(residuals)
# if you want to provide multiple output columns, for example, perhaps in the previous example we want a “predicted values” column as well, we’d add additional entries to the .a.yaml and the .r.yaml. each entry in the .a.yaml will result in one checkbox.
# if you want to provide multiple columns with a single checkbox/option, then you can use the items property.
# - name: predInt
# title: Prediction intervals
# varTitle: Pred interval
# type: Output
# items: 2
# then you can go:
# self$results$predInt$setValues(index=i, values)
# or you could wrap both columns of values in a data frame, and go:
# self$results$predInt$setValues(valuesinadataframe)
# you can use data bindings with items too. i.e.
# - name: resids
# title: Residuals
# type: Output
# varTitle: 'Residuals - $key'
# items: (vars)
# this will create an output column for each variable assigned to vars. these can be set:
# self$results$resids$setValues(key=key, values)
https://github.com/search?l=&q=select+repo%3Ajamovi%2Fjmv+filename%3A.b.R+language%3AR&type=Code
select repo:jamovi/jmv filename:.b.R language:R
for all jamovi library
generate advanced search readLines("https://raw.githubusercontent.com/jonathon-love/jamovi-library/master/modules.yaml")
jamovi_library_names <-
stringr::str_extract(
jamovi_library_names <-string = jamovi_library_names,
pattern = "github.com/(.*).git")
jamovi_library_names[!is.na(jamovi_library_names)]
jamovi_library_names <-
gsub(pattern = "github.com/|.git",
jamovi_library_names <-replacement = "",
x = jamovi_library_names)
c("jamovi/jmv", jamovi_library_names)
jamovi_library_names <-
gsub(pattern = "/",
jamovi_library_names <-replacement = "%2F",
x = jamovi_library_names)
"type: Level"
query <-
paste0("repo%3A",jamovi_library_names,"+")
repos <-
paste0(repos, collapse = "")
repos <-
gsub(pattern = "\\+$",
repos <-replacement = "",
x = repos)
paste0("https://github.com/search?q=",
github_search <-
query,"+",
repos,"&type=Code&ref=advsearch&l=&l=")
cat(github_search)
https://ci.appveyor.com/project/jonathon-love/jamovi-library/history
Try to use compatible packages with the jamovi’s R version.
Use: R 4.0.5 https://cran.r-project.org/bin/macosx/R-4.0.5.pkg
Use packages from mran:
options(
repos = "https://cran.microsoft.com/snapshot/2021-04-01"
)
jamovi.app/Contents/Resources/modules/base/R
this folder contains base R packages used for jamovi.
jmvtools::install() prevent the packages already installed in base/R from being installed into your module.
(jmvtools is an R package which is a thin wrapper around the jamovi-compiler. The jamovi-compiler is written in javascript)
That cause problems if you are using different package versions. So it is best to keep up with suggested 'mran' version.
jamovi is electron based. See R, shiny, and electron based application development here: Deploying a Shiny app as a desktop application with Electron
https://dev.jamovi.org/info_project-structure.html
https://forum.jamovi.org/viewtopic.php?f=12&t=1253&p=4251&hilit=npm#p4251
the easiest way to build jamovi on macOS is to use our dev bundle. https://www.jamovi.org/downloads/jamovi-dev.zip if you navigate to the
jamovi.app/Contents/Resources
folder, you’ll find a package.json which contains a bunch of different build commands. you can issue commands like: npm run build:client npm run build:server npm run build:analyses:jmv depending on which component you’re wanting to build.
make a data folder (same as with an R package), and then you put entries in your 0000.yaml file:
https://github.com/gamlj/gamlj/blob/master/jamovi/0000.yaml#L47-L108
jamovi/0000.yaml:47-108
datasets:
- name: qsport
path: qsport.csv
description: Training hours
tags:
.omv and .csv allowed. excel is also allowed but user does not see if it is csv or excel file.
data <- data.frame(outcome=c(1,0,0,1,NA,1))
data <- na.omit(data)
if ( ! is.numeric(data$outcome) || any(data$outcome != 0 & data$outcome != 1))
stop('Outcome variable must only contains 1s and 0s')
it’s good to test lots of different data sets that a user may have … include missing values, really large values, etc. etc. and make sure your analyses always handle them, and provide useful error messages for why an analysis doesn’t work. you don’t want to leave the user uncertain why something isn’t working … otherwise they just give up.
part of our philosophy is that people shouldn’t have to set their data up if they can’t be bothered … because with large data sets it can take a lot of time. so i’d encourage you to treat whatever the user provides you with as continuous, by converting it with toNumeric() … more on our data philosophy here: https://dev.jamovi.org/tuts0202-handling-data.html
in the options, you’ve got Survival Curve, and in the results, it’s Survival Plot … i’d encourage you to make these consistent. also, if the Survival Curve is unchecked, i’d hide the Surival plot, rather than leaving all that vacant space there.
visible: (optionName) https://github.com/jamovi/jmv/blob/master/jamovi/ttestis.r.yaml#L408-L416 jamovi/ttestis.r.yaml:408-416 - name: qq type: Image description: Q-Q plot width: 350 height: 300
is there a variable type for dates in jamovi? Can I force a user to add only a date to a VariablesListBox? I tried to get info from a selfoptionsvar via lubridate::is.Date and is.na.POSIXlt but it did not work hi, we don’t have a date data type at this time … only integer, numeric, and character … you could have people enter dates as character, and parse them yourself, but i appreciate that’s a bit of a hack
Thank you. Dates are always a problem in my routine practice. I work with many international colleagues and always date column is a mess, and people calculate survival time very differently. I want to have raw dates so that I can calculate survival time. I will try somehow going around.
learn YAML syntax
it’s a pretty straightforward syntax … you’ve basically got ‘objects’ where each of the elements have names, and you’ve got arrays, where each of the objects have an index. and that’s more-or-less all there is to it. you can take a look at jmv for examples: https://github.com/jamovi/jmv/tree/master/jamovi
I don’t think we’ve got a list of allowed parameters anywhere. Probably your best bet is to browse through the .yaml files in jmv. I think you’ll find there’s not that many parameter names.
as a work-around, once it’s installed the package from the Remotes, you can remove it from the DESCRIPTION and it won’t keep installing it over and over
Hi, there are scarce sources for pairwise chi-square tests. I have found rmngb::pairwise.chisq.test() and rmngb::pairwise.fisher.test() but that package has been removed from CRAN. Would you consider implementing this feature? I also thought to add these functions in a module, but I want to ask your policy about removed packages as well. 4 replies
jonathon:whale2: 18 days ago provided the module can be built with an entry in REMOTES, we don’t care if it’s not on CRAN
jonathon:whale2: 18 days ago … but you’re obviously taking a risk using something which isn’t maintained
Serdar Balci 18 days ago Thanks. Maybe just copying that function with appropriate reference may solve maintenance issue. I will think about it.
jonathon:whale2: 18 days ago oh yup
I have a question. I want to user to enter cut points in a box and then evaluate it as a vector. the function is this: summary(km_fit, times = c(12,36,60) I want user to define times vector. I have tried the following: utimes <- jmvcore::decomposeTerms(selfoptionscutp) utimes <- as.vector(utimes) summary(km_fit, times = utimes a.yaml is as follows: - name: cutp title: Define at least two cutpoints (in months) for survival table type: String default: ‘12, 36, 60’ Would you please guide me to convert input into a vector. (edited) 3 replies
Serdar Balci 13 hours ago I think this seems to work: utimes <- selfoptionscutp utimes <- strsplit(utimes, “,”) utimes <- purrr::reduce(utimes, as.vector) utimes <- as.numeric(utimes) (edited)
jonathon:whale2: 5 hours ago yup, this will do it too: as.numeric(strsplit(utimes, ‘,’)[[1]]) (it’s better if you can avoid using purrr, because it’s not really necessary, and you’re better off reducing the amount of dependencies you use)
Serdar Balci 5 hours ago thank you. :+1:
so wrt width/height, you can set that in the .r.yaml like so: https://github.com/kylehamilton/MAJOR/blob/master/jamovi/bayesmetacorr.r.yaml#L46-L49 it’s possible to do it programmatically, with … image$setSize()
Serdar Balci 4:48 PM
I think I am getting familiar with the codes :)
QuickTime Movie
JamoviModule.mov
4 MB QuickTime Movie— Click to download
Serdar Balci Nov 29th, 2019 at 12:39 PM
Module names now have R version and OS in them. Does it mean that this will not work in windows Installing ClinicoPath_0.0.1-macos-R3.3.0.jmo
4 replies
jonathon:whale2: 3 months ago
It depends on whether there are any native R packages in your modules dependencies. Most modules do, but some don't. (You'll notice there's a "uses native" property there now too ... my intention is to use that to determine if a module can be used cross platform or not)
jonathon:whale2: 3 months ago
If there's native dependencies, then the module needs to be built separately for each os.
jonathon:whale2: 3 months ago
But I can take care of building it for different oses
Serdar Balci 3 months ago
Oh, I see. Thank you :slightly_smiling_face:
FALSE, include=FALSE
library, eval=# install.packages('jmvtools', repos=c('https://repo.jamovi.org', 'https://cran.r-project.org'))
# jmvtools::check("C://Program Files//jamovi//bin")
# jmvtools::install(home = "C://Program Files//jamovi//bin")
#
# devtools::build(path = "C:\\ClinicoPathOutput")
# .libPaths(new = "C:\\ClinicoPathLibrary")
# devtools::build(path = "C:\\ClinicoPathOutput", binary = TRUE, args = c('--preclean'))
Sys.setenv(TZ="Europe/Istanbul")
library("jmvtools")
FALSE, include=FALSE
check, eval=
::check()
jmvtools
# rhub::check_on_macos()
# rhub::check_for_cran()
# codemetar::write_codemeta()
::check() devtools
FALSE, include=FALSE
pkgdown build, eval=::render('/Users/serdarbalciold/histopathRprojects/ClinicoPath/README.Rmd', encoding = 'UTF-8', knit_root_dir = '~/histopathRprojects/ClinicoPath', quiet = TRUE)
rmarkdown
::document()
devtools
::build_site() pkgdown
FALSE, include=FALSE
git force push, eval=# gitUpdateCommitPush
paste("updated on ", Sys.time(), sep = "")
CommitMessage <- getwd()
wd <- paste("cd ", wd, " \n git add . \n git commit --message '", CommitMessage, "' \n git push origin master \n", sep = "")
gitCommand <-# gitCommand <- paste("cd ", wd, " \n git add . \n git commit --no-verify --message '", CommitMessage, "' \n git push origin master \n", sep = "")
system(command = gitCommand, intern = TRUE)
FALSE, include=FALSE
add analysis, eval=
# jmvtools::install()
#
# jmvtools::create('SuperAwesome')
#
# jmvtools::addAnalysis(name='ttest', title='Independent Samples T-Test')
#
# jmvtools::addAnalysis(name='survival', title='survival')
#
# jmvtools::addAnalysis(name='correlation', title='correlation')
#
# jmvtools::addAnalysis(name='tableone', title='TableOne')
#
# jmvtools::addAnalysis(name='crosstable', title='CrossTable')
#
#
# jmvtools::addAnalysis(name='writesummary', title='WriteSummary')
# jmvtools::addAnalysis(name='finalfit', title='FinalFit')
# jmvtools::addAnalysis(name='multisurvival', title='FinalFit Multivariate Survival')
# jmvtools::addAnalysis(name='report', title='Report General Features')
# jmvtools::addAnalysis(name='frequencies', title='Frequencies')
# jmvtools::addAnalysis(name='statsplot', title='GGStatsPlot')
# jmvtools::addAnalysis(name='statsplot2', title='GGStatsPlot2')
# jmvtools::addAnalysis(name='scat2', title='scat2')
# jmvtools::addAnalysis(name='decisioncalculator', title='Decision Calculator')
# jmvtools::addAnalysis(name='agreement', title='Interrater Intrarater Reliability')
# jmvtools::addAnalysis(name='cluster', title='Cluster Analysis')
# jmvtools::addAnalysis(name='tree', title='Decision Tree')
FALSE, include=FALSE
devtools install, eval=::install() devtools
FALSE, include=FALSE
jmvtools install, eval=# jmvtools::check()
::install() jmvtools
FALSE, include=FALSE
construct, eval= jmvcore::constructFormula(terms = c("A", "B", "C"), dep = "D")
formula <-
::constructFormula(terms = list("A", "B", c("C", "D")), dep = "E")
jmvcore
::constructFormula(terms = list("A", "B", "C"))
jmvcore
jmvcore::decomposeFormula(formula = formula)
vars <-
unlist(vars)
jmvcore::composeTerm(components = formula)
cformula <-
::composeTerm("A")
jmvcore
::composeTerm(components = c("A", "B", "C"))
jmvcore
::decomposeTerm(term = c("A", "B", "C"))
jmvcore
::decomposeTerm(term = formula)
jmvcore
::decomposeTerm(term = cformula)
jmvcore
jmvcore::composeTerm(components = c("A", "B", "C"))
composeTerm <-
::decomposeTerm(term = composeTerm)
jmvcore
FALSE, include=FALSE
read data, eval= readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx")) deneme <-
FALSE, include=FALSE
writesummary, eval=::install(upgrade = FALSE, quick = TRUE)
devtools readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <-
# library("ClinicoPath")
$Age <- as.numeric(as.character(deneme$Age))
deneme
::writesummary(data = deneme, vars = Age)
ClinicoPath
::normality_message(deneme$Age, "Age")
ggstatsplot
::writesummary(
ClinicoPathdata = deneme,
vars = Age)
FALSE, include=FALSE
finalfit, eval=::install(upgrade = FALSE, quick = TRUE)
devtoolslibrary(dplyr)
library(survival)
library(finalfit)
readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <-::finalfit(data = deneme,
ClinicoPathexplanatory = Sex,
outcome = Outcome,
overalltime = OverallTime)
FALSE, include=FALSE
decision, eval=::install(upgrade = FALSE, quick = TRUE)
devtools readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <-
::decision(
ClinicoPathdata = deneme,
gold = Outcome,
goldPositive = "1",
newtest = Smoker,
testPositive = "TRUE")
::decision(
ClinicoPathdata = deneme,
gold = LVI,
goldPositive = "Present",
newtest = PNI,
testPositive = "Present")
FALSE, include=FALSE
eval= readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <-::ggbetweenstats(data = deneme,
ggstatsplotx = LVI,
y = Age)
FALSE, include=FALSE
statsplot, eval=::install(upgrade = FALSE, quick = TRUE)
devtools readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <-::statsplot(
ClinicoPathdata = deneme,
dep = Age,
group = Smoker)
2, eval=FALSE, include=FALSE
decision table(deneme$Outcome, deneme$Smoker)
mytable <-
::confusionMatrix(mytable)
caretconfusionMatrix(pred, truth)
confusionMatrix(xtab, prevalence = 0.25)
levels(deneme$Outcome)
1,2]
mytable[
"0"
d <-
"FALSE"]
mytable[d,
0]] mytable[[
FALSE, include=FALSE
construct formula, eval= jmvcore::constructFormula(terms = c("A", "B", "C"))
formula <-
::constructFormula(terms = list("A", "B", "C"))
jmvcore
jmvcore::decomposeFormula(formula = formula)
vars <-
jmvcore::decomposeTerms(vars)
vars <-
unlist(vars)
vars <-
as.formula(formula)
formula <-
"lvi"
my_group <- "age"
my_dep <-
paste0('x = ', group, 'y = ', dep)
formula <- as.formula(formula)
myformula <-
glueformula::gf(my_group, my_dep)
myformula <-
glue::glue( 'x = ' , my_group, ', y = ' , my_dep)
myformula <-
jmvcore::composeTerm(myformula)
myformula <-
FALSE, include=FALSE
eval= readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <-
library(survival)
survfit(Surv(OverallTime, Outcome) ~ LVI, data = deneme)
km_fit <-
library(dplyr)
summary(km_fit)
km_fit_median_df <- as.data.frame(km_fit_median_df$table) %>%
km_fit_median_df <- janitor::clean_names(dat = ., case = "snake") %>%
tibble::rownames_to_column(.data = ., var = "LVI")
2, eval=FALSE, include=FALSE
construct formula library(dplyr)
library(survival)
readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <-
deneme$OverallTime
myoveralltime <- deneme$Outcome
myoutcome <- deneme$LVI
myexplanatory <-
class(myoveralltime)
class(myoutcome)
typeof(myexplanatory)
is.ordered(myexplanatory)
jmvcore::constructFormula(terms = "myexplanatory")
formula2 <-# formula2 <- jmvcore::decomposeFormula(formula = formula2)
# formula2 <- paste("", formula2)
# formula2 <- as.formula(formula2)
jmvcore::composeTerm(formula2)
formula2 <-
jmvcore::constructFormula(terms = "myoveralltime")
formulaL <-# formulaL <- jmvcore::decomposeFormula(formula = formulaL)
jmvcore::constructFormula(terms = "myoutcome")
formulaR <-# formulaR <- jmvcore::decomposeFormula(formula = formulaR)
paste("Surv(", formulaL, ",", formulaR, ")")
formula <-# formula <- jmvcore::composeTerm(formula)
# formula <- as.formula(formula)
# jmvcore::constructFormula(terms = c(formula, formula2))
%>%
deneme finalfit::finalfit(formula, formula2) -> tUni
tUni
FALSE, include=FALSE
eval=library(dplyr)
readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <-
deneme %>%
results <- ggstatsplot::ggbetweenstats(LVI, Age)
results
deneme$Age
mydep <- deneme$LVI
mygroup <-
jmvcore::constructFormula(terms = "mygroup")
mygroup <- jmvcore::composeTerm(mygroup)
mygroup <-
jmvcore::constructFormula(terms = "mydep")
mydep <- jmvcore::composeTerm(mydep)
mydep <-
# not working
# eval(mygroup)
# rlang::eval_tidy(mygroup)
# !!mygroup
# mygroup
# sym(mygroup)
# quote(mygroup)
# enexpr(mygroup)
jmvcore::constructFormula(terms = "mygroup")
mygroup <- jmvcore::constructFormula(terms = "mydep")
mydep <-
paste(mydep)
formula1 <- jmvcore::composeTerm(formula1)
formula1 <-
paste(mygroup)
mygroup <- jmvcore::composeTerm(mygroup)
mygroup <-
deneme$Age
mydep <- deneme$LVI
mygroup <-
jmvcore::resolveQuo(jmvcore::enquo(mydep))
mydep <- jmvcore::resolveQuo(jmvcore::enquo(mygroup))
mygroup <-
data.frame(mygroup=mygroup, mydep=mydep)
mydata2 <-
mydata2 %>%
results <- ggstatsplot::ggbetweenstats(
x = mygroup, y = mydep )
results
glue::glue('x = ', mygroup, ', y = ' , mydep)
myformula <-
jmvcore::composeTerm(myformula)
myformula <-
as.formula(myformula)
myformula <-
quote(mydep)
mydep2 <- quote(mygroup)
mygroup2 <-
deneme %>%
results <- ggstatsplot::ggbetweenstats(!!mygroup2, !!mydep2)
results
3, eval=FALSE, include=FALSE
construct formula jmvcore::constructFormula(terms = c("myoveralltime", "myoutcome"))
formula <-
jmvcore::decomposeFormula(formula = formula)
vars <-
jmvcore::constructFormula(terms = c("explanatory"))
explanatory <-
jmvcore::decomposeFormula(formula = explanatory)
explanatory <-
unlist(explanatory)
explanatory <-
paste("Surv(", vars[1], ", ", vars[2], ")")
myformula <-
%>%
deneme ::finalfit(myformula, explanatory) -> tUni finalfit
FALSE, include=FALSE
table tangram, eval= readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <-
table3 <- tangram::html5(
::tangram(
tangram"Death ~ LVI + PNI + Age", deneme),
fragment=TRUE,
inline="nejm.css",
caption = "HTML5 Table NEJM Style",
id="tbl3")
table3
deneme$Age
mydep <- deneme$Death
mygroup <-
jmvcore::constructFormula(terms = c("LVI", "PNI", "Age"))
formulaR <-
jmvcore::constructFormula(terms = "Death")
formulaL <-
paste(formulaL, '~', formulaR)
formula <-
as.formula(formula)
formula <-
tangram::html5(
table <-::tangram(formula, deneme
tangram
))
table
'asis', eval=FALSE, include=FALSE
arsenal, results=
arsenal::tableby(~ Age + Sex, data = deneme)
tab1 <-
summary(tab1)
results <-
# results$object
# results$control
# results$totals
# results$hasStrata
# results$text
# results$pfootnote
# results$term.name
#
# tab1$Call
#
# tab1$control
$tables # this is where results lie
tab1
FALSE, include=FALSE
define survival time, eval=$int <- lubridate::interval(
mydata::ymd(mydata$SurgeryDate),
lubridate::ymd(mydata$LastFollowUpDate)
lubridate
)$OverallTime <- lubridate::time_length(mydata$int, "month")
mydata$OverallTime <- round(mydata$OverallTime, digits = 1) mydata
FALSE, include=FALSE
Multivariate Analysis, eval=library(finalfit)
library(survival)
explanatoryKM
explanatoryMultivariate <- dependentKM
dependentMultivariate <-
%>%
mydata finalfit(dependentMultivariate, explanatoryMultivariate) -> tMultivariate
::kable(tMultivariate, row.names=FALSE, align=c("l", "l", "r", "r", "r", "r")) knitr
FALSE, include=FALSE
eval=# Find arguments in yaml
c(
list_of_yaml <-list.files(path = "~/histopathRprojects/ClinicoPath-Jamovi--prep/jmv",
pattern = "\\.yaml$",
full.names = TRUE,
all.files = TRUE,
include.dirs = TRUE,
recursive = TRUE
)
)
purrr::map(
text_of_yaml_yml <-.x = list_of_yaml,
.f = readLines
)
as.vector(unlist(text_of_yaml_yml))
text_of_yaml_yml <-
arglist <- stringr::str_extract(
string = text_of_yaml_yml,
pattern =
"([[:alnum:]]*):"
)
arglist[!is.na(arglist)]
arglist <- unique(arglist)
arglist <- gsub(pattern = ":", # remove some characters
arglist <-replacement = "",
x = arglist)
trimws(arglist) # remove whitespace
arglist <-
cat(arglist, sep = "\n")
#
# # tUni_df_descr <- paste0("When ",
# # tUni_df$dependent_surv_overall_time_outcome[1],
# # " is ",
# # tUni_df$x[2],
# # ", there is ",
# # tUni_df$hr_univariable[2],
# # " times risk than ",
# # "when ",
# # tUni_df$dependent_surv_overall_time_outcome[1],
# # " is ",
# # tUni_df$x[1],
# # "."
# # )
#
# # results5 <- tUni_df_descr
FALSE, include=FALSE
eval=::melanoma
boot::export(x = boot::melanoma, file = "data/melanoma.csv")
rio
::colon
survival::export(x = survival::colon, file = "data/colon.csv")
rio
# BreastCancerData <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data"
#
# BreastCancerNames <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.names"
#
# BreastCancerData <- read.csv(file = BreastCancerData, header = FALSE,
# col.names = c("id","CT", "UCSize", "UCShape", "MA", "SECS", "BN", "BC", "NN","M", "diagnosis") )
library(mlbench)
data("BreastCancer")
BreastCancer
::export(x = BreastCancer, file = "data/BreastCancer.csv") rio
FALSE, include=FALSE
pairwise, eval= readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <-# names(deneme)
survminer::pairwise_survdiff(
mypairwise <-formula = survival::Surv(OverallTime, Outcome) ~ TStage,
data = deneme,
p.adjust.method = "BH"
)
as.data.frame(mypairwise[["p.value"]]) %>%
mypairwise2 <- tibble::rownames_to_column()
%>%
mypairwise2 tidyr::pivot_longer(cols = -rowname) %>%
dplyr::filter(complete.cases(.)) %>%
dplyr::mutate(description =
::glue(
glue"The comparison between rowname and name has a p-value of round(value, 2)."
)%>%
) dplyr::select(description) %>%
dplyr::pull() -> mypairwisedescription
unlist(mypairwisedescription)
mypairwisedescription <-
c(
mypairwisedescription <-"In the pairwise comparison of",
mypairwisedescription)
echo=FALSE
DiagrammeR::grViz(
diagram = here::here("vignettes/graph.gv"),
height = 200
)
FALSE, include=FALSE, echo=FALSE
eval=::mermaid(
DiagrammeRdiagram = here::here("vignettes/graph.mmd"),
height = 200
)
Remotes:
easystats/correlation,
easystats/report
# Future Works:
## ndphillips/FFTrees
# gtsummary
# myvars <- jmvcore::constructFormula(terms = self$options$vars)
# myvars <- jmvcore::decomposeFormula(formula = myvars)
# myvars <- unlist(myvars)
# mytableone2 <- self$data %>%
# dplyr::select(myvars)
# mytableone2 <- gtsummary::tbl_summary(mytableone2)
# self$results$text2$setContent(mytableone2)
# - name: outcomeLevel
# title: |
# Select Event (Death, Recurrence)
# type: Level
# variable: (outcome)
,
arsenal,
rlang,
knitr,
remotes,
kableExtra,
caret,
irr
Remotes:
easystats/bayestestR,
easystats/performance,
easystats/parameters,
easystats/report
Suggests:
effectsize,
emmeans,
rmarkdown,
igraph,
iterators,
rms,
commonmark,
sass
# #
# #
# # if (is.null(self$options$dep) || is.null(self$options$group))
# # return()
# #
# # mydata <- self$data
# #
# # mydep <- self$data[[self$options$dep]]
# #
# # mygroup <- self$data[[self$options$group]]
# #
# #
# # # klass <- print(
# # # list(
# # # "mydep" = c(typeof(mydep), class(mydep)),
# # # "mygroup" = c(typeof(mygroup), class(mygroup))
# # # )
# # # )
# #
# #
# # # self$results$text1$setContent(klass)
# #
# #
# # # plotData <- data.frame(gr = mygroup,
# # # dp = mydep)
# # # plotData <- jmvcore::naOmit(plotData)
# # # mydata_changes <- plotData %>%
# # # dplyr::group_by(gr, dp) %>%
# # # dplyr::tally(x = .)
# # #
# # # self$results$text2$setContent(mydata_changes)
# # #
# # # plotData <- data.frame(gr = mygroup,
# # # dp = mydep)
# # #
# # # plotData <- jmvcore::naOmit(plotData)
# # #
# # #
# # # mydata_changes <- plotData %>%
# # # dplyr::group_by(gr, dp) %>%
# # # dplyr::tally(x = .)
# # #
# # #
# # # deneme <- ggalluvial::is_alluvia_form(
# # # as.data.frame(mydata_changes),
# # # axes = 1:2, silent = TRUE)
# #
# # # nodes = data.frame("name" =
# # # c(self$options$group,
# # # self$options$dep))
# # #
# # # links <- mydata_changes
# # #
# # # names(links) = c("source", "target", "value")
# # #
# # # deneme <- networkD3::sankeyNetwork(Links = links, Nodes = nodes,
# # # Source = "source", Target = "target",
# # # Value = "value", NodeID = "name",
# # # fontSize= 12, nodeWidth = 30)
# #
# #
# #
# # # self$results$text3$setContent(deneme)
# #
# #
# #
# #
# # # Prepare Data for Plot ----
# #
# # direction <- self$options$direction
# #
# # mydata <- self$data
# #
# # mydep <- self$data[[self$options$dep]]
# #
# # mygroup <- self$data[[self$options$group]]
# #
# # contin <- c("integer", "numeric", "double")
# # categ <- c("factor")
# #
# # # independent, factor, continuous ----
# # # ggbetweenstats violin plots for comparisons between groups/conditions
# # if (direction == "independent" && class(mygroup) == "factor" && class(mydep) %in% contin) {
# # plotData <- data.frame(gr = mygroup,
# # dp = jmvcore::toNumeric(mydep))
# #
# #
# #
# #
# # # independent, continuous, continuous ----
# # # ggscatterstats scatterplots for correlations between two variables
# #
# # if (direction == "independent" && class(mygroup) %in% contin && class(mydep) %in% contin) {
# # plotData <- data.frame(gr = jmvcore::toNumeric(mygroup),
# # dp = jmvcore::toNumeric(mydep))
# #
# #
# #
# #
# #
# # # independent, factor, factor ----
# # # ggbarstats bar charts for categorical data
# # if (direction == "independent" && class(mygroup) == "factor" && class(mydep) == "factor") {
# #
# # plotData <- data.frame(gr = mygroup,
# # dp = mydep)
# #
# #
# #
# # # independent, continuous, factor ----
# #
# # if (direction == "independent" && class(mygroup) %in% contin && class(mydep) == "factor") {
# #
# # stop("Please switch the values: factor variable should be on x-axis and continuous variable should be on y-axis")
# # }
# #
# #
# #
# # # repeated, factor, continuous ----
# # # ggwithinstats violin plots for comparisons within groups/conditions
# #
# #
# #
# # if (direction == "repeated" && class(mygroup) == "factor" && class(mydep) %in% contin) {
# # plotData <- data.frame(gr = mygroup,
# # dp = jmvcore::toNumeric(mydep))
# #
# #
# #
# #
# # # repeated, continuous, continuous ----
# # # rmcorr::rmcorr()
# #
# #
# # if (direction == "repeated" && class(mygroup) %in% contin && class(mydep) %in% contin) {
# #
# #
# # stop("Currently this module does not support repeated measures correlation.")
# #
# # }
# #
# #
# # # repeated, factor, factor ----
# # # http://corybrunson.github.io/ggalluvial/
# #
# # if (direction == "repeated" && class(mygroup) == "factor" && class(mydep) == "factor") {
# # plotData <- data.frame(gr = mygroup,
# # dp = mydep)
# #
# #
# #
# # # repeated, continuous, factor ----
# #
# # if (direction == "repeated" && class(mygroup) %in% contin && class(mydep) == "factor") {
# #
#
#
#
#
#
# # Results ----
#
#
#
# # Send Data to Plot ----
#
# # plotData <- jmvcore::naOmit(plotData)
# # image <- self$results$plot
# # image$setState(plotData)
#
#
# # }
#
#
# # ,
# #
# # .plot = function(image, ...) { # <-- the plot function ----
# #
# #
# # if (is.null(self$options$dep) || is.null(self$options$group))
# # return()
# #
# #
# # plotData <- image$state
# #
# # direction <- self$options$direction
# #
# # mydata <- self$data
# #
# # mydep <- self$data[[self$options$dep]]
# #
# # mygroup <- self$data[[self$options$group]]
# #
# # contin <- c("integer", "numeric", "double")
# # categ <- c("factor")
# #
# # # independent, factor, continuous ----
# # # ggbetweenstats violin plots for comparisons between groups/conditions
# #
# # if (direction == "independent" && class(mygroup) == "factor" && class(mydep) %in% contin) {
# #
# # plot <- ggstatsplot::ggbetweenstats(
# # data = plotData,
# # x = gr,
# # y = dp
# # )
# # }
# #
# # # independent, continuous, continuous ----
# # # ggscatterstats scatterplots for correlations between two variables
# #
# #
# # if (direction == "independent" && class(mygroup) %in% contin && class(mydep) %in% contin) {
# #
# # plot <- ggstatsplot::ggscatterstats(
# # data = plotData,
# # x = gr,
# # y = dp
# # )
# #
# # }
# #
# # # independent, factor, factor ----
# # # ggbarstats bar charts for categorical data
# #
# #
# # if (direction == "independent" && class(mygroup) == "factor" && class(mydep) == "factor") {
# #
# #
# #
# # plot <- ggstatsplot::ggbarstats(
# # data = plotData,
# # main = gr,
# # condition = dp
# # )
# # }
# #
# # # repeated, factor, continuous ----
# # # ggwithinstats violin plots for comparisons within groups/conditions
# #
# #
# # if (direction == "repeated" && class(mygroup) == "factor" && class(mydep) %in% contin) {
# #
# #
# # plot <- ggstatsplot::ggwithinstats(
# # data = plotData,
# # x = gr,
# # y = dp
# # )
# #
# # }
# #
# # # repeated, continuous, continuous ----
# # # rmcorr::rmcorr()
# #
# # # my.rmc <- rmcorr::rmcorr(participant = Subject,
# # # measure1 = PacO2,
# # # measure2 = pH,
# # # dataset = rmcorr::bland1995)
# # #
# # # plot(my.rmc, overall = TRUE)
# # #
# # # ggplot2::ggplot(rmcorr::bland1995,
# # # ggplot2::aes(x = PacO2,
# # # y = pH,
# # # group = factor(Subject),
# # # color = factor(Subject)
# # # )
# # # ) +
# # # ggplot2::geom_point(ggplot2::aes(colour = factor(Subject))) +
# # # ggplot2::geom_line(ggplot2::aes(y = my.rmc$model$fitted.values), linetype = 1)
# #
# #
# #
# # # repeated, factor, factor ----
# # # http://corybrunson.github.io/ggalluvial/
# # # networkD3
# #
# #
# # if (direction == "repeated" && class(mygroup) == "factor" && class(mydep) == "factor") {
# #
# #
# # mydata_changes <- plotData %>%
# # dplyr::group_by(gr, dp) %>%
# # dplyr::tally(x = .)
# #
# #
# # # head(as.data.frame(UCBAdmissions), n = 12)
# #
# # # ggalluvial::is_alluvia_form(
# # # as.data.frame(UCBAdmissions),
# # # axes = 1:3, silent = TRUE)
# #
# #
# #
# # # plot <- ggplot(as.data.frame(UCBAdmissions),
# # # aes(y = Freq, axis1 = Gender, axis2 = Dept)) +
# # # geom_alluvium(aes(fill = Admit), width = 1/12) +
# # # geom_stratum(width = 1/12, fill = "black", color = "grey") +
# # # geom_label(stat = "stratum", infer.label = TRUE) +
# # # scale_x_discrete(limits = c("Gender", "Dept"), expand = c(.05, .05)) +
# # # scale_fill_brewer(type = "qual", palette = "Set1") +
# # # ggtitle("UC Berkeley admissions and rejections, by sex and department")
# #
# #
# #
# #
# #
# # stratum <- ggalluvial::StatStratum
# #
# # plot <- ggplot2::ggplot(data = mydata_changes,
# # ggplot2::aes(axis1 = gr,
# # axis2 = dp,
# # y = n)) +
# # ggplot2::scale_x_discrete(limits = c(self$options$group, self$options$dep),
# # expand = c(.1, .05)
# # ) +
# # ggplot2::xlab(self$options$group) +
# # ggalluvial::geom_alluvium(ggplot2::aes(fill = gr,
# # colour = gr
# # )) +
# # ggalluvial::geom_stratum() +
# # ggalluvial::stat_stratum(geom = "stratum") +
# # ggplot2::geom_label(stat = stratum, infer.label = TRUE) +
# #
# # # ggalluvial::geom_stratum(stat = "stratum", label.strata = TRUE) +
# # # ggplot2::geom_text(stat = "stratum", infer.label = TRUE) +
# # # ggplot2::geom_text(label.strata = TRUE) +
# # # ggalluvial::geom_stratum()
# # ggplot2::theme_minimal()
# # # ggplot2::ggtitle(paste0("Changes in ", self$options$group))
# # #
# # #
# # # nodes = data.frame("name" =
# # # c(self$options$group,
# # # self$options$dep))
# # #
# # # links <- mydata_changes
# # #
# # # names(links) = c("source", "target", "value")
# # #
# # # plot <- networkD3::sankeyNetwork(Links = links, Nodes = nodes,
# # # Source = "source", Target = "target",
# # # Value = "value", NodeID = "name",
# # # fontSize= 12, nodeWidth = 30)
# #
# # # library(networkD3)
# # # nodes = data.frame("name" =
# # # c("Node A", # Node 0
# # # "Node B", # Node 1
# # # "Node C", # Node 2
# # # "Node D"))# Node 3
# # # links = as.data.frame(matrix(c(
# # # 0, 1, 10, # Each row represents a link. The first number
# # # 0, 2, 20, # represents the node being conntected from.
# # # 1, 3, 30, # the second number represents the node connected to.
# # # 2, 3, 40),# The third number is the value of the node
# # # byrow = TRUE, ncol = 3))
# # # names(links) = c("source", "target", "value")
# # # sankeyNetwork(Links = links, Nodes = nodes,
# # # Source = "source", Target = "target",
# # # Value = "value", NodeID = "name",
# # # fontSize= 12, nodeWidth = 30)
# #
# # # plot <- c("Under Construction")
# #
# # # plot <- list(plot1,
# # # plot2)
# #
# #
# #
# # }
# #
# #
# #
# # print(plot)
# # TRUE
# #
# # }
# #
# # )
# # )
# Packages
Imports:
jmvcore (>= 0.8.5),
R6,
dplyr,
survival,
survminer,
finalfit,
arsenal,
purrr,
glue,
janitor,
ggplot2,
forcats,
ggstatsplot,
tableone,
explore,
tangram,
irr,
rlang,
tidyselect,
knitr
Remotes:
easystats/correlation,
neuropsychology/psycho.R@0.4.0
Suggests:
rmarkdown,
remotes,
devtools,
lubridate,
broom,
GGally,
gridExtra,
Hmisc,
lme4,
magrittr,
mice,
pillar,
pROC,
scales,
stringr,
tibble,
tidyr,
covr,
cmprsk,
readr,
rstan,
survey,
testthat,
backports,
generics,
assertthat,
pkgconfig,
Rcpp,
BH,
plogr,
ellipsis,
gtable,
progress,
RColorBrewer,
reshape,
digest,
lazyeval,
viridisLite,
withr,
Formula,
latticeExtra,
acepack,
data.table,
htmlTable,
viridis,
htmltools,
base64enc,
minqa,
nloptr,
RcppEigen,
mitml,
cli,
crayon,
fansi,
utf8,
vctrs,
farver,
labeling,
munsell,
lifecycle,
stringi,
ggpubr,
maxstat,
survMisc,
jsonlite,
rex,
evaluate,
highr,
markdown,
xfun,
hms,
clipr,
mime,
tinytex,
StanHeaders,
inline,
loo,
pkgbuild,
numDeriv,
mitools,
pkgload,
praise,
zeallot,
colorspace,
prettyunits,
checkmate,
htmlwidgets,
pan,
jomo,
ordinal,
ucminf,
ggrepel,
ggsci,
cowplot,
ggsignif,
polynom,
exactRankTests,
mvtnorm,
KMsurv,
zoo,
km.ci,
xtable,
curl,
openssl,
askpass,
sys,
matrixStats,
callr,
desc,
rprojroot,
processx,
ps,
DBI,
png,
jpeg,
boot,
grid,
snakecase,
caret,
iterators,
timeDate,
foreach,
plyr,
ModelMetrics,
nlme,
reshape2,
recipes,
BradleyTerry2,
e1071,
earth,
fastICA,
gam,
ipred,
kernlab,
klaR,
MASS,
ellipse,
mda,
mgcv,
mlbench,
MLmetrics,
nnet,
party,
pls,
proxy,
randomForest,
RANN,
spls,
subselect,
pamr,
superpc,
Cubist,
rpart,
qgraph,
nFactors,
ppcor,
rstanarm,
MuMIn,
blavaan,
# Develop
# install.packages('jmvtools', repos=c('https://repo.jamovi.org', 'https://cran.r-project.org'))
# jmvtools::check("C://Program Files//jamovi//bin")
# jmvtools::install(home = "C://Program Files//jamovi//bin")
#
# jmvtools::install(pkg = "C://ClinicoPath", home = "C://Program Files//jamovi//bin")
# devtools::build(path = "C:\\ClinicoPathOutput")
# .libPaths(new = "C:\\ClinicoPathLibrary")
# devtools::build(path = "C:\\ClinicoPathOutput", binary = TRUE, args = c('--preclean'))
Sys.setenv(TZ = "Europe/Istanbul")
library("jmvtools")
jmvtools::check()
# rhub::check_on_macos()
# rhub::check_for_cran()
# codemetar::write_codemeta()
devtools::check()
# From CRAN
# install.packages("attachment")
# From github
# remotes::install_github("ThinkR-open/attachment")
# If you correctly called the package dependencies in the {roxygen2} skeleton, in your functions, in your Rmarkdown vignettes and in your tests, you only need to run attachment::att_to_description()just before devtools::check(). And that’s it, there is nothing else to remember !
# attachment::att_to_description()
devtools::document()
codemetar::write_codemeta()
# rmarkdown::render('/Users/serdarbalciold/histopathRprojects/ClinicoPath/README.Rmd', encoding = 'UTF-8', knit_root_dir = '~/histopathRprojects/ClinicoPath', quiet = TRUE)
pkgdown::build_articles()
# pkgdown::build_favicons()
pkgdown::build_home()
pkgdown::build_news()
pkgdown::build_reference()
# pkgdown::build_reference_index()
# pkgdown::build_tutorials()
pkgdown::build_site()
# devtools::github_release()
# gitUpdateCommitPush
CommitMessage <- paste("updated on ", Sys.time(), sep = "")
wd <- getwd()
gitCommand <- paste("cd ", wd, " \n git add . \n git commit --message '", CommitMessage, "' --no-verify \n git push origin master \n", sep = "")
# gitCommand <- paste("cd ", wd, " \n git add . \n git commit --no-verify --message '", CommitMessage, "' \n git push origin master \n", sep = "")
system(command = gitCommand, intern = TRUE)
# jmvtools::install()
#
# jmvtools::create('SuperAwesome')
#
# jmvtools::addAnalysis(name='ttest', title='Independent Samples T-Test')
#
# jmvtools::addAnalysis(name='survival', title='survival')
#
# jmvtools::addAnalysis(name='correlation', title='correlation')
#
# jmvtools::addAnalysis(name='tableone', title='TableOne')
#
# jmvtools::addAnalysis(name='crosstable', title='CrossTable')
#
#
# jmvtools::addAnalysis(name='writesummary', title='WriteSummary')
# jmvtools::addAnalysis(name='finalfit', title='FinalFit')
# jmvtools::addAnalysis(name='multisurvival', title='FinalFit Multivariate Survival')
# jmvtools::addAnalysis(name='report', title='Report General Features')
# jmvtools::addAnalysis(name='frequencies', title='Frequencies')
# jmvtools::addAnalysis(name='statsplot', title='GGStatsPlot')
# jmvtools::addAnalysis(name='statsplot2', title='GGStatsPlot2')
# jmvtools::addAnalysis(name='statsplotbetween', title='Stats Plot Between')
# jmvtools::addAnalysis(name='competingsurvival', title='Competing Survival')
# jmvtools::addAnalysis(name='scat2', title='scat2')
# jmvtools::addAnalysis(name='decisioncalculator', title='Decision Calculator')
# jmvtools::addAnalysis(name='agreement', title='Interrater Intrarater Reliability')
# jmvtools::addAnalysis(name='cluster', title='Cluster Analysis')
# jmvtools::addAnalysis(name='tree', title='Decision Tree')
#
# jmvtools::addAnalysis(name='oddsratio', title='Odds Ratio Table and Plot')
# jmvtools::addAnalysis(name='roc', title='ROC')
# jmvtools::addAnalysis(name = "icccoeff", title = "ICC coefficients")
# jmvtools::addAnalysis(name = "gtsummary", title = "Tables via gtsummary")
# jmvtools::addAnalysis(name = "alluvial", title = "Alluvial Diagrams")
Sys.unsetenv("R_PROFILE_USER")
devtools::check()
devtools::install()
# jmvtools::check()
jmvtools::install()
formula <- jmvcore::constructFormula(terms = c("A", "B", "C"), dep = "D")
jmvcore::constructFormula(terms = list("A", "B", c("C", "D")), dep = "E")
jmvcore::constructFormula(terms = "A B")
jmvcore::constructFormula(terms = list("A", "B", "C"))
vars <- jmvcore::decomposeFormula(formula = formula)
unlist(vars)
cformula <- jmvcore::composeTerm(components = formula)
jmvcore::composeTerm("A B")
jmvcore::composeTerm(components = c("A", "B", "C"))
jmvcore::decomposeTerm(term = c("A", "B", "C"))
jmvcore::decomposeTerm(term = formula)
jmvcore::decomposeTerm(term = cformula)
composeTerm <- jmvcore::composeTerm(components = c("A", "B", "C"))
jmvcore::decomposeTerm(term = composeTerm)
BreastCancer <- readr::read_csv(file = "/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/BreastCancer.csv")
usethis::use_data(BreastCancer)
BreastCancer <- readr::read_csv(file = "/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/BreastCancer.csv")
usethis::use_data(BreastCancer)
colon <- readr::read_csv(file =
"/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/colon.csv")
usethis::use_data(colon)
melanoma <- readr::read_csv(file =
"/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/melanoma.csv")
usethis::use_data(melanoma)
rocdata <- readr::read_csv(file =
"/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/rocdata.csv")
usethis::use_data(rocdata)
histopathology <- readr::read_csv(file =
"/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/histopathology.csv")
usethis::use_data(histopathology)
## force git
# gitUpdateCommitPush
CommitMessage <- paste("updated on ", Sys.time(), sep = "")
wd <- getwd()
gitCommand <- paste("cd ", wd, " \n git add . \n git commit --message '", CommitMessage, "' \n git push origin master \n", sep = "")
system(command = gitCommand, intern = TRUE)
## update project for release
readyfunctions <- c(
"refs",
# "^agreement",
# "^competingsurvival",
# "^correlation",
"^crosstable",
# "^decision",
# "^decisioncalculator",
# "^icccoeff",
"^multisurvival",
"^oddsratio",
# "^pairchi2",
"^reportcat",
# "^roc",
"^statsplot2",
"^summarydata",
"^survival",
"^tableone"
# "^tree",
# "^utils-pipe"
# "^vartree"
)
readyfunctions <- paste0(readyfunctions, collapse = "|")
files_R <-
list.files(path = here::here("R"),
pattern = readyfunctions,
full.names = TRUE)
files_jamovi <-
list.files(
path = here::here("jamovi"),
pattern = readyfunctions,
full.names = TRUE
)
files_data <-
list.files(
path = here::here("data"),
full.names = TRUE
)
file.copy(from = files_R,
to = "~/ClinicoPath/R/",
overwrite = TRUE)
file.copy(from = files_jamovi,
to = "~/ClinicoPath/jamovi/",
overwrite = TRUE)
file.copy(from = files_data,
to = "~/ClinicoPath/data/",
overwrite = TRUE)
file.copy(from = files_data,
to = "~/histopathRprojects/ClinicoPath/inst/extdata/",
overwrite = TRUE)
# Example
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
library(magrittr)
corx <- deneme %>%
dplyr::select(Age, OverallTime) %>%
stats::cor(method = "spearman") %>%
report::report()
inherits(deneme$Sex, "character")
ggstatsplot::ggbetweenstats(data = deneme,
x = Sex,
y = Age,
type = "p")
ClinicoPath::statsplot2(
data = deneme,
dep = Age,
group = Sex)
devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
# library("ClinicoPath")
deneme$Age <- as.numeric(as.character(deneme$Age))
ClinicoPath::writesummary(data = deneme, vars = Age)
ggstatsplot::normality_message(deneme$Age, "Age")
ClinicoPath::writesummary(
data = deneme,
vars = Age)
devtools::install(upgrade = FALSE, quick = TRUE)
library(dplyr)
library(survival)
library(finalfit)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ClinicoPath::finalfit(data = deneme,
explanatory = Sex,
outcome = Outcome,
overalltime = OverallTime)
devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ClinicoPath::decision(
data = deneme,
gold = Outcome,
goldPositive = "1",
newtest = Smoker,
testPositive = "TRUE")
ClinicoPath::decision(
data = deneme,
gold = LVI,
goldPositive = "Present",
newtest = PNI,
testPositive = "Present")
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ggstatsplot::ggbetweenstats(data = deneme,
x = LVI,
y = Age)
devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ClinicoPath::statsplot(
data = deneme,
dep = Age,
group = Smoker)
mytable <- table(deneme$Outcome, deneme$Smoker)
caret::confusionMatrix(mytable)
confusionMatrix(pred, truth)
confusionMatrix(xtab, prevalence = 0.25)
levels(deneme$Outcome)
mytable[1,2]
d <- "0"
mytable[d, "FALSE"]
mytable[[0]]
formula <- jmvcore::constructFormula(terms = c("A", "B", "C"))
jmvcore::constructFormula(terms = list("A", "B", "C"))
vars <- jmvcore::decomposeFormula(formula = formula)
vars <- jmvcore::decomposeTerms(vars)
vars <- unlist(vars)
formula <- as.formula(formula)
my_group <- "lvi"
jmvcore::composeTerm(my_group)
my_dep <- "age"
formula <- paste0('x = ', group, 'y = ', dep)
myformula <- as.formula(formula)
myformula <- glueformula::gf({my_group}, {my_dep})
myformula <- glue::glue( 'x = ' , {my_group}, ', y = ' , {my_dep})
myformula <- jmvcore::composeTerm(myformula)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
library(survival)
km_fit <- survfit(Surv(OverallTime, Outcome) ~ LVI, data = deneme)
library(dplyr)
km_fit_median_df <- summary(km_fit)
km_fit_median_df <- as.data.frame(km_fit_median_df$table) %>%
janitor::clean_names(dat = ., case = "snake") %>%
tibble::rownames_to_column(.data = ., var = "LVI")
library(dplyr)
library(survival)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
myoveralltime <- deneme$OverallTime
myoutcome <- deneme$Outcome
myexplanatory <- deneme$LVI
class(myoveralltime)
class(myoutcome)
typeof(myexplanatory)
is.ordered(myexplanatory)
formula2 <- jmvcore::constructFormula(terms = "myexplanatory")
# formula2 <- jmvcore::decomposeFormula(formula = formula2)
# formula2 <- paste("", formula2)
# formula2 <- as.formula(formula2)
formula2 <- jmvcore::composeTerm(formula2)
formulaL <- jmvcore::constructFormula(terms = "myoveralltime")
# formulaL <- jmvcore::decomposeFormula(formula = formulaL)
formulaR <- jmvcore::constructFormula(terms = "myoutcome")
# formulaR <- jmvcore::decomposeFormula(formula = formulaR)
formula <- paste("Surv(", formulaL, ",", formulaR, ")")
# formula <- jmvcore::composeTerm(formula)
# formula <- as.formula(formula)
# jmvcore::constructFormula(terms = c(formula, formula2))
deneme %>%
finalfit::finalfit(formula, formula2) -> tUni
tUni
library(dplyr)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
results <- deneme %>%
ggstatsplot::ggbetweenstats(LVI, Age)
results
mydep <- deneme$Age
mygroup <- deneme$LVI
mygroup <- jmvcore::constructFormula(terms = "mygroup")
mygroup <- jmvcore::composeTerm(mygroup)
mydep <- jmvcore::constructFormula(terms = "mydep")
mydep <- jmvcore::composeTerm(mydep)
# not working
# eval(mygroup)
# rlang::eval_tidy(mygroup)
# !!mygroup
# {{mygroup}}
# sym(mygroup)
# quote(mygroup)
# enexpr(mygroup)
mygroup <- jmvcore::constructFormula(terms = "mygroup")
mydep <- jmvcore::constructFormula(terms = "mydep")
formula1 <- paste(mydep)
formula1 <- jmvcore::composeTerm(formula1)
mygroup <- paste(mygroup)
mygroup <- jmvcore::composeTerm(mygroup)
mydep <- deneme$Age
mygroup <- deneme$LVI
mydep <- jmvcore::resolveQuo(jmvcore::enquo(mydep))
mygroup <- jmvcore::resolveQuo(jmvcore::enquo(mygroup))
mydata2 <- data.frame(mygroup=mygroup, mydep=mydep)
results <- mydata2 %>%
ggstatsplot::ggbetweenstats(
x = mygroup, y = mydep )
results
myformula <- glue::glue('x = ', {mygroup}, ', y = ' , {mydep})
myformula <- jmvcore::composeTerm(myformula)
myformula <- as.formula(myformula)
mydep2 <- quote(mydep)
mygroup2 <- quote(mygroup)
results <- deneme %>%
ggstatsplot::ggbetweenstats(!!mygroup2, !!mydep2)
results
formula <- jmvcore::constructFormula(terms = c("myoveralltime", "myoutcome"))
vars <- jmvcore::decomposeFormula(formula = formula)
explanatory <- jmvcore::constructFormula(terms = c("explanatory"))
explanatory <- jmvcore::decomposeFormula(formula = explanatory)
explanatory <- unlist(explanatory)
myformula <- paste("Surv(", vars[1], ", ", vars[2], ")")
deneme %>%
finalfit::finalfit(myformula, explanatory) -> tUni
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
table3 <-
tangram::html5(
tangram::tangram(
"Death ~ LVI + PNI + Age", deneme),
fragment=TRUE,
# style = "hmisc",
style = "nejm",
# inline="nejm.css",
caption = "HTML5 Table",
id="tbl3")
table3
mydep <- deneme$Age
mygroup <- deneme$Death
formulaR <- jmvcore::constructFormula(terms = c("LVI", "PNI", "Age"))
formulaL <- jmvcore::constructFormula(terms = "Death")
formula <- paste(formulaL, '~', formulaR)
# formula <- as.formula(formula)
sty <- jmvcore::composeTerm(components = "nejm")
gr <- jmvcore::composeTerm(components = "Death")
table <- tangram::html5(
tangram::tangram(formula, deneme
),
fragment=TRUE,
# style = "hmisc",
# style = "nejm",
style = sty,
# inline="nejm.css",
caption = paste0("HTML5 Table ", gr),
id="tbl4")
table
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
mydata <- deneme
formula2 <- jmvcore::constructFormula(terms = c("LVI", "PNI", "Age"))
formulaR <- jmvcore::constructFormula(terms = "Death")
formulaR <- jmvcore::toNumeric(formulaR)
plot <-
finalfit::or_plot(
.data = mydata,
dependent = formulaR,
explanatory = formula2,
remove_ref = FALSE,
table_text_size = 4,
title_text_size = 14,
random_effect = NULL,
factorlist = NULL,
glmfit = NULL,
confint_type = NULL,
breaks = NULL,
column_space = c(-0.5, 0, 0.5),
dependent_label = "Death",
prefix = "",
suffix = ": OR (95% CI, p-value)",
table_opts = NULL,
plot_opts = list(
ggplot2::xlab("OR, 95% CI"),
ggplot2::theme(
axis.title = ggplot2::element_text(size = 12)
)
)
)
# Other Codes
## arsenal
tab1 <- arsenal::tableby(~ Age + Sex, data = deneme)
results <- summary(tab1)
# results$object
# results$control
# results$totals
# results$hasStrata
# results$text
# results$pfootnote
# results$term.name
#
# tab1$Call
#
# tab1$control
tab1$tables # this is where results lie
## define survival time
mydata$int <- lubridate::interval(
lubridate::ymd(mydata$SurgeryDate),
lubridate::ymd(mydata$LastFollowUpDate)
)
mydata$OverallTime <- lubridate::time_length(mydata$int, "month")
mydata$OverallTime <- round(mydata$OverallTime, digits = 1)
## Multivariate Analysis Survival
library(finalfit)
library(survival)
explanatoryMultivariate <- explanatoryKM
dependentMultivariate <- dependentKM
mydata %>%
finalfit(dependentMultivariate, explanatoryMultivariate) -> tMultivariate
knitr::kable(tMultivariate, row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))
# Find arguments in yaml
list_of_yaml <- c(
list.files(path = "~/histopathRprojects/ClinicoPath-Jamovi--prep/jmv",
pattern = "\\.yaml$",
full.names = TRUE,
all.files = TRUE,
include.dirs = TRUE,
recursive = TRUE
)
)
text_of_yaml_yml <- purrr::map(
.x = list_of_yaml,
.f = readLines
)
text_of_yaml_yml <- as.vector(unlist(text_of_yaml_yml))
arglist <-
stringr::str_extract(
string = text_of_yaml_yml,
pattern =
"([[:alnum:]]*):"
)
arglist <- arglist[!is.na(arglist)]
arglist <- unique(arglist)
arglist <- gsub(pattern = ":", # remove some characters
replacement = "",
x = arglist)
arglist <- trimws(arglist) # remove whitespace
cat(arglist, sep = "\n")
#
# # tUni_df_descr <- paste0("When ",
# # tUni_df$dependent_surv_overall_time_outcome[1],
# # " is ",
# # tUni_df$x[2],
# # ", there is ",
# # tUni_df$hr_univariable[2],
# # " times risk than ",
# # "when ",
# # tUni_df$dependent_surv_overall_time_outcome[1],
# # " is ",
# # tUni_df$x[1],
# # "."
# # )
#
# # results5 <- tUni_df_descr
boot::melanoma
rio::export(x = boot::melanoma, file = "data/melanoma.csv")
survival::colon
rio::export(x = survival::colon, file = "data/colon.csv")
# BreastCancerData <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data"
#
# BreastCancerNames <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.names"
#
# BreastCancerData <- read.csv(file = BreastCancerData, header = FALSE,
# col.names = c("id","CT", "UCSize", "UCShape", "MA", "SECS", "BN", "BC", "NN","M", "diagnosis") )
library(mlbench)
data("BreastCancer")
BreastCancer
rio::export(x = BreastCancer, file = "data/BreastCancer.csv")
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
# names(deneme)
mypairwise <- survminer::pairwise_survdiff(
formula = survival::Surv(OverallTime, Outcome) ~ TStage,
data = deneme,
p.adjust.method = "BH"
)
mypairwise2 <- as.data.frame(mypairwise[["p.value"]]) %>%
tibble::rownames_to_column()
mypairwise2 %>%
tidyr::pivot_longer(cols = -rowname) %>%
dplyr::filter(complete.cases(.)) %>%
dplyr::mutate(description =
glue::glue(
"The comparison between {rowname} and {name} has a p-value of {round(value, 2)}."
)
) %>%
dplyr::select(description) %>%
dplyr::pull() -> mypairwisedescription
mypairwisedescription <- unlist(mypairwisedescription)
mypairwisedescription <- c(
"In the pairwise comparison of",
mypairwisedescription)
# mydata <- self$data
# mydep <- self$data[[self$options$dep]]
# mygroup <- self$data[[self$options$group]]
#
#
# plotData <- data.frame(gr = mygroup, dp = jmvcore::toNumeric(mydep))
# plotData <- jmvcore::naOmit(plotData)
#
# image <- self$results$plot
#
# image$setState(plotData)
# self$results$text1$setContent(plotData)
# mydepType <- data.frame(vclass = class(mydep),
# vtypeof = typeof(mydep),
# vordered = is.ordered(mydep),
# vfactor = is.factor(mydep),
# vnumeric = is.numeric(mydep),
# vdouble = is.double(mydep),
# vcharacter = is.character(mydep),
# vdate = lubridate::is.Date(mydep),
# vdate2 = is.na.POSIXlt(mydep)
# )
# mygroupType <- class(mygroup)
# variableTypes <- list(mydepType, mygroupType)
# self$results$text1$setContent(variableTypes)
# plotData <- image$state
# https://indrajeetpatil.github.io/ggstatsplot/
# ggbetweenstats violin plots for comparisons between groups/conditions
# ggwithinstats violin plots for comparisons within groups/conditions
#
# ggdotplotstats dot plots/charts for distribution about labeled numeric variable
#
# ggbarstats bar charts for categorical data
#
# ggscatterstats scatterplots for correlations between two variables
# http://corybrunson.github.io/ggalluvial/
# plot <- ggplot(plotData, aes(x = gr,
# y = dp)) +
# geom_point()
# plot <- plotData %>%
# ggstatsplot::ggbetweenstats(
# x = gr,
# y = dp
# )
library(readr)
BreastCancer <- read_csv("data/BreastCancer.csv")
View(BreastCancer)
mytarget <- "Class"
myvars <- c("Cl.thickness",
"Cell.size",
"Cell.shape",
"Marg.adhesion",
"Epith.c.size",
"Bare.nuclei",
"Bl.cromatin",
"Normal.nucleoli",
"Mitoses")
mydata <- BreastCancer %>%
select(mytarget, myvars)
formula <- jmvcore::constructFormula(terms = mytarget)
formula <- paste(formula, '~ .')
formula <- as.formula(formula)
# Create an FFTrees object from the data
FFTrees.fft <- FFTrees::FFTrees(
formula = formula,
data = mydata
)
# Plot the best tree applied to the test data
plot2 <- plot(FFTrees.fft,
data = mydata
# ,
# main = "Heart Disease",
# decision.labels = c("Healthy", "Disease")
)
devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ClinicoPath::statsplotbetween(
data = deneme,
dep = LVI,
group = PNI)
myirr <- data.frame(
Rater1 = c(0L,1L,1L,0L,0L,0L,1L,1L,1L,0L,1L,
1L,1L,1L,1L,0L,NA,1L,1L,0L,0L,1L,1L,1L,1L,1L,0L,
1L,1L,1L,1L,0L,1L,1L,1L,1L,1L,0L,0L,1L,1L,1L,
1L,1L,0L,1L,1L,1L,0L,0L,1L,1L,1L,0L,1L,1L,1L,0L,
1L,1L,0L,1L,0L,1L,1L,0L,0L,1L,0L,1L,1L,1L,0L,0L,
0L,0L,1L,1L,1L,0L,0L,1L,1L,1L,1L,0L,0L,0L,1L,0L,
0L,1L,1L,0L,1L,1L,0L,1L,1L,0L,1L,1L,0L,1L,1L,
0L,1L,1L,1L,0L,1L,1L,1L,0L,1L,1L,0L,0L,1L,0L,1L,
1L,1L,0L,1L,1L,1L,1L,1L,1L,1L,1L,0L,1L,1L,1L,1L,
1L,1L,1L,1L,1L,1L,0L,1L,1L,1L,1L,1L,1L,1L,0L,0L,
1L,0L,1L,1L,1L,1L,1L,0L,0L,1L,1L,1L,1L,1L,0L,
0L,0L,1L,1L,0L,1L,1L,0L,1L,0L,1L,1L,1L,0L,1L,1L,
1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,
0L,0L,1L,1L,1L,1L,0L,0L,1L,1L,0L,1L,1L,1L,0L,1L,
0L,1L,1L,1L,1L,0L,0L,0L,0L,1L,0L,1L,1L,1L,0L,
0L,1L,1L,1L,0L,1L,0L,0L,0L,1L,1L,1L,0L,1L,0L,0L,
0L,1L,1L),
Rater2 = c(0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,
0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,1L,1L,1L,0L,
1L,1L,1L,1L,0L,1L,1L,1L,1L,1L,0L,0L,1L,1L,1L,
1L,1L,0L,1L,1L,1L,0L,0L,1L,1L,1L,0L,1L,1L,1L,0L,
1L,1L,0L,1L,0L,1L,1L,0L,0L,1L,0L,1L,1L,1L,0L,0L,
0L,0L,1L,1L,1L,0L,0L,1L,1L,1L,1L,0L,0L,0L,1L,0L,
0L,1L,1L,0L,1L,1L,0L,1L,1L,0L,1L,1L,0L,1L,1L,
0L,1L,1L,1L,0L,1L,1L,1L,0L,1L,1L,0L,0L,1L,0L,1L,
1L,1L,0L,1L,1L,1L,1L,1L,1L,1L,1L,0L,1L,1L,1L,1L,
1L,1L,1L,1L,1L,1L,0L,1L,1L,1L,1L,1L,1L,1L,0L,0L,
1L,0L,1L,1L,1L,1L,1L,0L,0L,1L,1L,1L,1L,1L,0L,
0L,0L,1L,1L,0L,1L,1L,0L,1L,0L,1L,1L,1L,0L,1L,1L,
1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,
0L,0L,1L,1L,1L,1L,0L,0L,1L,1L,0L,1L,1L,1L,1L,1L,
1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,0L,1L,1L,1L,0L,
0L,1L,1L,1L,0L,1L,0L,0L,0L,1L,1L,1L,0L,1L,0L,0L,
0L,1L,1L)
)
myirr <- myirr %>%
dplyr::mutate(
RaterA = dplyr::case_when(
Rater1 == 0 ~ "Negative",
Rater1 == 1 ~ "Positive"
)
) %>%
dplyr::mutate(
RaterB = dplyr::case_when(
Rater2 == 0 ~ "Negative",
Rater2 == 1 ~ "Positive"
)
) %>%
dplyr::select(RaterA, RaterB) %>%
mutate(RaterA = as.factor(RaterA)) %>%
mutate(RaterB = as.factor(RaterB))
table <- myirr %$%
table(RaterA, RaterB)
mymatrix <- caret::confusionMatrix(table, positive = "Positive")
mymatrix
caret::sensitivity(table, positive = "Positive")
mymatrix2 <- caret::confusionMatrix(table, positive = "Positive", prevalence = 0.25)
mymatrix2
dat <- as.table(
matrix(c(670,202,74,640),
nrow = 2,
byrow = TRUE)
)
colnames(dat) <- c("Dis+","Dis-")
rownames(dat) <- c("Test+","Test-")
rval <- epiR::epi.tests(dat, conf.level = 0.95)
rval <- list(
dat,
rval,
print(rval),
summary(rval)
)
devtools::install(upgrade = FALSE, quick = TRUE)
library(dplyr)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ratings <- deneme %>%
dplyr::select(LVI, PNI, Age, ID)
f <- unlist(lapply(ratings, class))
any(f == "numeric")
all(f == "numeric")
xtitle <- names(ratings)[1]
ytitle <- names(ratings)[2]
result <- table(ratings[,1], ratings[,2],
dnn = list(xtitle, ytitle))
table(ratings)
result1 <- irr::agree(ratings)
result2 <- irr::kappa2(ratings)
ClinicoPath::agreement(
data = deneme,
vars = c(LVI,PNI)
)
result2 <- irr::kappam.fleiss(
ratings = ratings,
exact = FALSE,
detail = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
mytree <- vtree::vtree(deneme, "LVI PNI")
# write(mytree[["x"]][["diagram"]],
# file = here::here("/tododata/trial1.gv"))
# DiagrammeR::grViz(diagram = here::here("/tododata/trial1.gv"))
diagram <- mytree[["x"]][["diagram"]]
mytree2 <- DiagrammeR::grViz(diagram = diagram)
print(mytree2)
# Packages for Development
## rpkgtools
devtools::install_github("IndrajeetPatil/rpkgtools")
## available
Check if a package name is available to use https://docs.ropensci.org/available
https://github.com/r-lib/available
available::available("clinicopath")
available::available("lens2r")
## bench
High Precision Timing of R Expressions http://bench.r-lib.org/
https://github.com/r-lib/bench
## desc
Manipulate DESCRIPTION files
https://github.com/r-lib/desc
## pkgverse
pkgverse: Build a Meta-Package Universe
https://pkgverse.mikewk.com/
## pkgbuild
pkgbuild: Find Tools Needed to Build R Packages
https://github.com/r-lib/pkgbuild
## pkgload
pkgload: Simulate Package Installation and Attach
https://github.com/r-lib/pkgload
## rcmdcheck
rcmdcheck: Run 'R CMD check' from 'R' and Capture Results
https://github.com/r-lib/rcmdcheck
## remotes
## sessioninfo
Print Session Information
https://github.com/r-lib/sessioninfo
## "covr
## "exampletestr
## "covrpage",
## "gramr",
## "lintr",
## "goodpractice",
## "pkgdown",
## "usethis",
## "testthat",
## "spelling",
## "RTest",
https://towardsdatascience.com/rtest-pretty-testing-of-r-packages-50f50b135650
## "rhub",
## "roxygen2",
## "sinew",
## "styler",
## "vdiffr"
## "attachment (https://github.com/ThinkR-open/attachment)
## "covrpage (https://github.com/yonicd/covrpage)
## "defender (https://github.com/ropenscilabs/defender)
## "gramr (https://github.com/ropenscilabs/gramr)
## "packagemetrics (https://github.com/ropenscilabs/packagemetrics)
## "pRojects (https://github.com/lockedata/pRojects)
## "revdepcheck (https://github.com/r-lib/revdepcheck)
## "roxygen2Comment (https://github.com/csgillespie/roxygen2Comment)
## "roxygen2md (https://github.com/r-lib/roxygen2md)
## "testdown (https://github.com/ThinkR-open/testdown)
## "tic (https://github.com/ropenscilabs/tic)
# Table1 <- table(mydata[[testVariable]], mydata[[goldVariable]])
# Table1 <- mydata %>%
# janitor::tabyl(.data[[testVariable]], .data[[goldVariable]]) %>%
# janitor::adorn_totals(dat = ., where = c("row", "col")) %>%
# janitor::adorn_percentages(dat = ., denominator = "row") %>%
# janitor::adorn_percentages(dat = ., denominator = "col") %>%
# janitor::adorn_pct_formatting(dat = ., rounding = "half up", digits = 1) %>%
# janitor::adorn_ns(dat = .) %>%
# janitor::adorn_title("combined")
# results1 <- Table1
# results1 <- summary(km_fit)$table
# km_fit_median_df <- summary(km_fit)
# km_fit_median_df <- as.data.frame(km_fit_median_df$table) %>%
# janitor::clean_names(dat = ., case = "snake") %>%
# tibble::rownames_to_column(.data = .)
# results1 <- tibble::as_tibble(results1,
# .name_repair = "minimal") %>%
# janitor::clean_names(dat = ., case = "snake") %>%
# tibble::rownames_to_column(.data = ., var = self$options$explanatory)
table2 <- matrix(c(80, 20, 30, 70), nrow = 2, ncol = 2, byrow = TRUE, dimnames = list(c("Positive", "Negative"), c("Positive","Negative")))
table3 <- as.table(table2)
names(attributes(table3)$dimnames) <- c("Test","Gold Standart")
caretresult <- caret::confusionMatrix(table3, mode = "everything")
table3 <- matrix(c(80L, 20L, 25L, 30L, 70L, 75L), nrow = 2, ncol = 3, byrow = TRUE)
# RVAideMemoire::chisq.multcomp() RVAideMemoire::fisher.multcomp()
result1 <- RVAideMemoire::chisq.multcomp(table3)
result1 <- result1[["p.value"]]
result1 <- as.data.frame(result1) %>%
tibble::rownames_to_column()
result1 <- result1 %>%
tidyr::pivot_longer(cols = -rowname) %>%
dplyr::filter(complete.cases(.))
myfun <- function(i,j) {
if(!is.na(result1[i,j])){
paste0(
dimnames(result1)[[1]][i],
" vs ",
dimnames(result1)[[2]][j],
" p= ",
result1[i,j])
}
}
for (i in 1:dim(result1)[1]) {
for (j in 1:dim(result1)[2]) {
des <- myfun(i,j)
if(!is.null(des)) print(des)
}
}
myfun1 <- function(i,j) {
if(!is.na(result1[i,j])){
dimnames(result1)[[1]][i]
}
}
for (i in 1:dim(result1)[1]) {
for (j in 1:dim(result1)[2]) {
des <- myfun1(i,j)
if(!is.null(des)) print(des)
}
}
myfun(3,3)
myfun(1,2)
dimnames(result1)[[1]][2]
RVAideMemoire::fisher.multcomp(table3)
# rmngb::pairwise.chisq.test(x, ...) rmngb::pairwise.fisher.test(x, ...)
library(rmngb)
x <- sample(1:2, 1e3, TRUE)
g <- sample(1:4, 1e3, TRUE)
result2 <- rmngb::pairwise.chisq.test(x, g)
tab <- table(g, x)
resultrmngb <- rmngb::pairwise.fisher.test(tab, p.adj = "bonf")
result2[["p.value"]]
resultrmngb[["p.value"]]
rmngb::pairwise.chisq.test(tab)
formula <- jmvcore::constructFormula(terms = self$options$vars)
formula <- paste('~', formula)
formula <- as.formula(formula)
table1 <- arsenal::tableby(formula, self$data,
total = TRUE,
digits = 1,
digits.count = 1
)
myarsenal <- summary(table1, text = "html")
myarsenal <- kableExtra::kable(myarsenal, format = "html",
digits = 1,
escape = TRUE) %>%
kableExtra::kable_styling(kable_input = .,
bootstrap_options = "striped",
full_width = F,
position = "left")
library(dplyr)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
varsName <- c("LVI", "PNI")
tablelist <- list()
for (i in 1:length(varsName)) {
var <- varsName[i]
table <- deneme %>%
janitor::tabyl(dat = ., var) %>%
janitor::adorn_totals("row") %>%
janitor::adorn_pct_formatting(dat = .)
tablelist[[i]] <- table
}
tablelist
data <- self$data
vars <- self$options$vars
facs <- self$options$facs
target <- self$options$target
# data <- jmvcore::select(data, c(vars, facs, target))
if ( ! is.null(vars))
for (var in vars)
data[[var]] <- jmvcore::toNumeric(data[[var]])
if ( ! is.null(facs))
for (fac in facs)
data[[fac]] <- as.factor(data[[fac]])
data[[target]] <- as.factor(data[[target]])
data <- jmvcore::naOmit(data)
# TODO
# todo <- glue::glue(
# "This Module is still under development
# -
# -
# "
# )
# self$results$todo$setContent(todo)
# if (nrow(self$data) == 0)
# stop('Data contains no (complete) rows')
# if (is.null(self$options$vars) || is.null(self$options$target))
# return()
# prepare data for explore ----
# https://cran.r-project.org/web/packages/explore/vignettes/explore.html
# result1 <- iris %>% explore::explain_tree(target = Species)
#
# self$results$text1$setContent(result1)
# image <- self$results$plot
# image$setState(plotData)
# from https://forum.jamovi.org/viewtopic.php?f=2&t=1287
# library(caret)
# library(partykit)
# detach("package:partykit", unload=TRUE)
# library(party)
# Conditional Trees
# set.seed(3456)
# model <- train(
# yvar ~ .,
# data = df,
# method = 'ctree2',
# trControl = trainControl("cv", number = 10, classProbs = FALSE),
# tuneGrid = expand.grid(maxdepth = 3, mincriterion = 0.95)
# )
# plot(model$finalModel)
#
# t(sapply(unique(where(model$finalModel)), function(x) {
# n <- nodes(model$finalModel, x)[[1]]
# yvar <- df[as.logical(n$weights), "yvar"]
# cbind.data.frame("Node" = as.integer(x),
# psych::describe(yvar, quant=c(.25,.50,.75), skew = FALSE))
# }))
# data <- private$.cleanData()
# vars <- self$options$vars
# facs <- self$options$facs
# target <- self$options$target
# tree1 <- data %>%
# explore::explain_tree(target = .data[[target]])
# if (is.null(self$options$vars) || is.null(self$options$target))
# return()
# varsName <- self$options$vars
#
# facsName <- self$options$facs
#
# targetName <- self$options$target
#
# data <- jmvcore::select(self$data, c(varsName, facsName, targetName))
#
# data[[varsName]] <- jmvcore::toNumeric(data[[varsName]])
#
# for (fac in facsName)
# data[[facsName]] <- as.factor(data[[facsName]])
#
# data <- jmvcore::naOmit(data)
# tree1 <- data %>%
# explore::explain_tree(target = .data[[targetName]])
# plot <- iris %>% explore::explain_tree(target = Species)
# if (length(self$options$dep) + length(self$options$group) < 2)
# return()
# tree1 <- iris %>% explore::explain_tree(target = Species)
# iris$is_versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
# tree2 <- iris %>%
# dplyr::select(-Species) %>%
# explore::explain_tree(target = is_versicolor)
# tree3 <- iris %>%
# explore::explain_tree(target = Sepal.Length)
library(magrittr)
# devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
mydata <- deneme
varsName <- "Age"
# facsName <- c("LVI", "PNI")
targetName <- "Outcome"
mydata[[targetName]] <- as.factor(mydata[[targetName]])
mydata <- jmvcore::select(mydata, c(varsName,
# facsName,
targetName))
mydata <- jmvcore::naOmit(mydata)
explore::explain_tree(data = mydata,
target = targetName
)
mydata %>%
explore::explain_tree(target = .data[[targetName]])
iris %>% explore::explain_tree(target = Species)
BreastCancer %>%
dplyr::select(all_of(mytarget), all_of(myvars)) %>%
explore::explain_tree(target = .data[[mytarget]])
ClinicoPath::tree(
data = data,
vars = Age,
facs = vars(LVI, PNI),
target = Mortality)
mytarget <- "Class"
myvars <- c("Cl.thickness",
"Cell.size",
"Cell.shape",
"Marg.adhesion",
"Epith.c.size",
"Bare.nuclei",
"Bl.cromatin",
"Normal.nucleoli",
"Mitoses")
# mytarget <- jmvcore::composeTerms(mytarget)
# mytarget <- jmvcore::constructFormula(terms = mytarget)
# install.packages("easyalluvial")
library(magrittr)
# devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
mydata <- deneme
var1 <- "TStage"
var2 <- "Grade"
mydata <- jmvcore::select(df = mydata, columnNames = c(var1, var2))
mydata <- jmvcore::naOmit(mydata)
plot <-
easyalluvial::alluvial_wide( data = mydata
, max_variables = 5
, fill_by = 'first_variable'
, verbose = TRUE
)
plot %>%
easyalluvial::add_marginal_histograms(mydata)
imports <- c( attachment::att_from_rscripts(“./R”, recursive = TRUE) )
attachment::att_to_desc_from_is(path.d = “DESCRIPTION”, imports = imports, normalize = TRUE, add_remotes = TRUE)