‘A beginners guide to jamovi modules’ or ‘jamovi modules for dummies’

Official documentation is here: https://dev.jamovi.org/

TL;DR

Briefly:

install.packages('jmvtools', repos=c('https://repo.jamovi.org', 'https://cran.r-project.org'))

Let me know how it goes :)

preparing development tools

use an unsigned version of jamovi for development in mac

https://dev.jamovi.org/#28-02-2020

https://www.jamovi.org/downloads/jamovi-unsigned.zip

jmvtools should be installed from the jamovi repo

https://dev.jamovi.org/tuts0101-getting-started.html

install.packages('jmvtools', repos=c('https://repo.jamovi.org', 'https://cran.r-project.org'))
jmvtools::check()
jmvtools::install()

You can use devtools::install() to use your codes as a usual R package, submit to github or CRAN. devtools::check() does not like some jamovi folders so be sure to add them under .Rbuildignore

Creating a Module

https://dev.jamovi.org/tuts0102-creating-a-module.html

jmvtools::create(path = "~/ClinicoPathDescriptives")

add analysis

jmvtools::create('function')

Structure



Development Files

DESCRIPTION file

Imports, Depends, Suggests, and Remotes have practically no difference in building jamovi modules. The jmvtools::install() copies libraries under build folder.

Under Imports jmvcore and R6 are defaults.

With Remotes one can install github packages as well. But with each jmvtools::install() command it tries to check the updates, and if you are online throws an error. An upgrade = FALSE, quick = TRUE argument like in devtools::install() is not available, yet. One workaround is temporarily deleting Remotes from DESCRIPTION. The package folders continue to remain under build folder.

One can also directly copy package folders from system R package folder (find via .libPaths()) as well.

NAMESPACE file

No need to change.

R folder

R folder is where the codes are present. There are two files.

function.h.R

No need to change. Auto-updated and overwritten.

function.b.R

Write Formula

https://cran.r-project.org/web/packages/jmv/vignettes/new-syntax.html

jmv::ANOVA(formula = len ~ supp * dose, ToothGrowth)
jmv::ANOVA(ToothGrowth, len, vars(supp, dose))
jmv::ANOVA(..., emMeans = ~ supp + dose:supp)
jmv::ANOVA(ToothGrowth, 'len', c('supp', 'dose'))

In this case, jmv will look for variables in ToothGrowth called ‘dep’ or ‘factors’. This is tidy evaluation. To instruct jmv to use the contents of it’s arguments, rather than the symbol name, prefix them with the !! signifier. For example:

dep <- 'len'
factors <- c('supp', 'dose')

jmv::ANOVA(ToothGrowth, !!dep, !!factors)
Warning, Error Messages
if (nrow(self$data) == 0) stop("Data contains no (complete) rows")
Prepare Data For Analysis
        varsName <- self$options$vars

        data <- jmvcore::select(self$data, c(varsName))
Remove NA containing cases (works on selected variables)
        data <- jmvcore::naOmit(data)

jmvcore::toNumeric() https://dev.jamovi.org/tuts0202-handling-data.html

can I just send whole data to plot function? you usually don’t want to, but sometimes it’s appropriate. normally you just provide a summary of the data to the plot function … just enough data for it to do it’s job. but if you need the whole data set for the plot function, then you can specify requiresData: true on the image object. that means the plot function can access self$data. i do it in the correlation matrix for example. there’s no summary i could send … the plot function needs all the data: https://github.com/jamovi/jmv/blob/master/jamovi/corrmatrix.r.yaml#L143 jamovi/corrmatrix.r.yaml:143 requiresData: true

Prepare Data to Send to Plot Function

jamovi folder

function.a.yaml

function.r.yaml

preformatted

Using “preformatted” result element I get a markdown table output. Is there a way to somehow render/convert this output to html version. Or should I go with https://dev.jamovi.org/api_table.html table api?

so you’re best to make use of the table api … the table API has a lot more features than an md table.

p-value format
     - name: p
       title: "p"
       type: number
       format: zto,pvalue

function.u.yaml

LevelSelector
 i have added the property allowNone to the LevelSelector control. This will allow the user to select None from the listbox.
maxItemCount: 1

0000.yaml

00refs.yaml

prepare a 00refs.yaml like this: https://github.com/jamovi/jmv/blob/master/jamovi/00refs.yaml

attach references to objects in the .r.yaml file like this:

https://github.com/jamovi/jmv/blob/master/jamovi/ancova.r.yaml#L174

Tables

I want a long table. I tried to use following but got error.

Below is my current .r.yaml - name: irrtable title: Interrater Reliability type: Table rows: 1 columns: - name: method title: ‘Method’ type: text - name: subjects title: ‘Subjects’ type: integer - name: raters title: ‘Raters’ type: integer - name: peragree title: ‘Agreement %’ type: number - name: kappa title: ‘Kappa’ type: number - name: z title: ‘z’ type: number - name: p title: ‘p-value’ type: number format: zto,pvalue

Plots

build folder

js folder

event.js

R3.6.3-macos

Installing

jmvtools::install

devtools::install

devtools::install(upgrade = FALSE, quick = TRUE)

.init()

so the principle seems right. you initialise the table in the .init() phase (you add rows and columns), and then you populate the table in the .run() phase. however, i notice your .init() function calls .initcTable() which doesn’t actually do anything.
most of the time, .init() isn’t necessary, because the .r.yaml file can take care of it, but sometimes the rows/columns the table should have is a more complex calculation than the .r.yaml allows (and example of this might be the ANOVA table in jmv … there’s not a simple relationship between the number of variables in the option, i.e. dose, supp, and the number of rows in the ANOVA table dose, supp, supp * dose, residuals. so we can’t achieve this with the .r.yaml, and so we set it up in the .init() phase.
finally, there are times where you can’t even determine the number of rows/columns in the .init() phase. you can only decide how many rows/columns are appropriate after you’ve run the analysis. an example of this might be a cluster analysis, where there’s a row for each cluster, but you only know how many rows you need after the analysis has been run. this is the least desireable, because it does lead to the growing and shrinking of the table, but sometimes that’s unavoidable.
so that’s your order of preference. preferably in the .r.yaml, if that can’t work, then do it in the .init(), and as a last resort, you can do it in the .run()

Output variables in jamovi 1.6.16

hi, we’ve added “output variables” to version 1.6.16 of jamovi. this allows analyses to save data from the analyses, back to the spreadsheet (for example, residuals). there’s nothing in the 1.6.16 which indicates to users that this functionality is there, and it will only appear when an analysis implements these features. the idea is that we won’t actually release any modules with these features publicly, until an upcoming jamovi 1.8, or 2.0, or whatever. we’ve added these to the 1.6.16 so you can begin developing for the upcoming release.
you begin by specifying an output option in your .a.yaml file, i.e.

                # - name: resids
                # title: Residuals
                # type: Output
                # and then add an entry into your .r.yaml file, with a matching name:
                #     - name: resids
                # title: Residuals
                # type: Output
                # varTitle: '`Residuals - ${ dep }`'
                # varDescription: Residuals from ANCOVA
                # clearWith:
                #     - dep
                # - factors
                # - covs
                # - modelTerms
                # in this case you’ll see that i’m specifying a formatted string, where the name of the column produced is generated from the dep variable, or dependent variable.
                # you can populate the output column with:
                #     if (self$options$resids && self$results$resids$isNotFilled()) {
                #         self$results$resids$setValues(aVector)
                #     }
                # sometimes your dataset will have gaps in it, either from filters, or from you calling na.omit() on it, and so if you simply send the residuals from your linear model to $setValues() they won’t be placed in the correct rows. there are two ways to solve this.
                call self$results$resids$setRowNums(...) . conveniently, you can simply take the rownames() from your data set (after calling na.omit()) on it, and pass this in here. i.e.
                # cleanData <- na.omit(self$data)
                # ...
                # rowNums <- rownames(cleanData)
                # self$results$resids$setRowNums(rowNums)
                # alternatively, you can turn your residuals into a data frame, attach the row numbers to that:
                #     residuals <- ...
                # residuals <- data.frame(residuals=residuals, row.names=rownames(cleanData))
                # self$results$setValues(residuals)
                # if you want to provide multiple output columns, for example, perhaps in the previous example we want a “predicted values” column as well, we’d add additional entries to the .a.yaml and the .r.yaml. each entry in the .a.yaml will result in one checkbox.
                # if you want to provide multiple columns with a single checkbox/option, then you can use the items property.
                # - name: predInt
                # title: Prediction intervals
                # varTitle: Pred interval
                # type: Output
                # items: 2
                # then you can go:
                #     self$results$predInt$setValues(index=i, values)
                # or you could wrap both columns of values in a data frame, and go:
                #     self$results$predInt$setValues(valuesinadataframe)
                # you can use data bindings with items too. i.e.
                # - name: resids
                # title: Residuals
                # type: Output
                # varTitle: 'Residuals - $key'
                # items: (vars)
                # this will create an output column for each variable assigned to vars. these can be set:
                #     self$results$resids$setValues(key=key, values)

Other Tips

Code Search in GitHub

https://github.com/search/advanced?q=select+repo%3Ajamovi%2Fjmv+filename%3A.b.R+language%3AR&type=Code

https://github.com/search?l=&q=select+repo%3Ajamovi%2Fjmv+filename%3A.b.R+language%3AR&type=Code

select repo:jamovi/jmv filename:.b.R language:R
generate advanced search for all jamovi library
jamovi_library_names <- readLines("https://raw.githubusercontent.com/jonathon-love/jamovi-library/master/modules.yaml")

jamovi_library_names <- stringr::str_extract(
  string = jamovi_library_names,
  pattern = "github.com/(.*).git")

jamovi_library_names <- jamovi_library_names[!is.na(jamovi_library_names)]

jamovi_library_names <- gsub(pattern = "github.com/|.git",
                             replacement = "",
                             x = jamovi_library_names)

jamovi_library_names <- c("jamovi/jmv", jamovi_library_names)

jamovi_library_names <- gsub(pattern = "/",
                              replacement = "%2F",
                              x = jamovi_library_names)

query <- "type: Level"

repos <- paste0("repo%3A",jamovi_library_names,"+")

repos <- paste0(repos, collapse = "")

repos <- gsub(pattern = "\\+$",
              replacement = "",
              x = repos)

github_search <- paste0("https://github.com/search?q=",
                        query,
                        "+",
                        repos,
                        "&type=Code&ref=advsearch&l=&l=")

cat(github_search)

YAML

RStudio options

.gitignore

add following to .gitignore file

# jamovi
/build/
/build-*/
*.jmo

R version

Try to use compatible packages with the jamovi’s R version.

Use: R 4.0.5 https://cran.r-project.org/bin/macosx/R-4.0.5.pkg

Use packages from mran:

options(
repos = "https://cran.microsoft.com/snapshot/2021-04-01"
                )

Base R packages within jamovi

jamovi.app/Contents/Resources/modules/base/R

this folder contains base R packages used for jamovi.

jmvtools::install() prevent the packages already installed in base/R from being installed into your module. 

(jmvtools is an R package which is a thin wrapper around the jamovi-compiler. The jamovi-compiler is written in javascript)

That cause problems if you are using different package versions. So it is best to keep up with suggested 'mran' version. 

Electron

jamovi is electron based. See R, shiny, and electron based application development here: Deploying a Shiny app as a desktop application with Electron

Project Structure

https://dev.jamovi.org/info_project-structure.html

https://forum.jamovi.org/viewtopic.php?f=12&t=1253&p=4251&hilit=npm#p4251

the easiest way to build jamovi on macOS is to use our dev bundle. https://www.jamovi.org/downloads/jamovi-dev.zip if you navigate to the jamovi.app/Contents/Resources folder, you’ll find a package.json which contains a bunch of different build commands. you can issue commands like: npm run build:client npm run build:server npm run build:analyses:jmv depending on which component you’re wanting to build.

Other Codes

Add Datasets

make a data folder (same as with an R package), and then you put entries in your 0000.yaml file:
https://github.com/gamlj/gamlj/blob/master/jamovi/0000.yaml#L47-L108
jamovi/0000.yaml:47-108
datasets:
  - name: qsport
    path: qsport.csv
    description: Training hours
    tags:

.omv and .csv allowed. excel is also allowed but user does not see if it is csv or excel file.

Error messages

data <- data.frame(outcome=c(1,0,0,1,NA,1))
data <- na.omit(data)
if ( ! is.numeric(data$outcome) || any(data$outcome != 0 & data$outcome != 1))
  stop('Outcome variable must only contains 1s and 0s')

it’s good to test lots of different data sets that a user may have … include missing values, really large values, etc. etc. and make sure your analyses always handle them, and provide useful error messages for why an analysis doesn’t work. you don’t want to leave the user uncertain why something isn’t working … otherwise they just give up.

part of our philosophy is that people shouldn’t have to set their data up if they can’t be bothered … because with large data sets it can take a lot of time. so i’d encourage you to treat whatever the user provides you with as continuous, by converting it with toNumeric() … more on our data philosophy here: https://dev.jamovi.org/tuts0202-handling-data.html

https://youtu.be/oWZrrWc6e74

in the options, you’ve got Survival Curve, and in the results, it’s Survival Plot … i’d encourage you to make these consistent. also, if the Survival Curve is unchecked, i’d hide the Surival plot, rather than leaving all that vacant space there.

visible: (optionName) https://github.com/jamovi/jmv/blob/master/jamovi/ttestis.r.yaml#L408-L416 jamovi/ttestis.r.yaml:408-416 - name: qq type: Image description: Q-Q plot width: 350 height: 300

is there a variable type for dates in jamovi? Can I force a user to add only a date to a VariablesListBox? I tried to get info from a selfoptionsvar via lubridate::is.Date and is.na.POSIXlt but it did not work hi, we don’t have a date data type at this time … only integer, numeric, and character … you could have people enter dates as character, and parse them yourself, but i appreciate that’s a bit of a hack

Thank you. Dates are always a problem in my routine practice. I work with many international colleagues and always date column is a mess, and people calculate survival time very differently. I want to have raw dates so that I can calculate survival time. I will try somehow going around.

learn YAML syntax

it’s a pretty straightforward syntax … you’ve basically got ‘objects’ where each of the elements have names, and you’ve got arrays, where each of the objects have an index. and that’s more-or-less all there is to it. you can take a look at jmv for examples: https://github.com/jamovi/jmv/tree/master/jamovi

I don’t think we’ve got a list of allowed parameters anywhere. Probably your best bet is to browse through the .yaml files in jmv. I think you’ll find there’s not that many parameter names.

as a work-around, once it’s installed the package from the Remotes, you can remove it from the DESCRIPTION and it won’t keep installing it over and over

Hi, there are scarce sources for pairwise chi-square tests. I have found rmngb::pairwise.chisq.test() and rmngb::pairwise.fisher.test() but that package has been removed from CRAN. Would you consider implementing this feature? I also thought to add these functions in a module, but I want to ask your policy about removed packages as well. 4 replies

jonathon:whale2: 18 days ago provided the module can be built with an entry in REMOTES, we don’t care if it’s not on CRAN

jonathon:whale2: 18 days ago … but you’re obviously taking a risk using something which isn’t maintained

Serdar Balci 18 days ago Thanks. Maybe just copying that function with appropriate reference may solve maintenance issue. I will think about it.

jonathon:whale2: 18 days ago oh yup


I have a question. I want to user to enter cut points in a box and then evaluate it as a vector. the function is this: summary(km_fit, times = c(12,36,60) I want user to define times vector. I have tried the following: utimes <- jmvcore::decomposeTerms(selfoptionscutp) utimes <- as.vector(utimes) summary(km_fit, times = utimes a.yaml is as follows: - name: cutp title: Define at least two cutpoints (in months) for survival table type: String default: ‘12, 36, 60’ Would you please guide me to convert input into a vector. (edited) 3 replies

Serdar Balci 13 hours ago I think this seems to work: utimes <- selfoptionscutp utimes <- strsplit(utimes, “,”) utimes <- purrr::reduce(utimes, as.vector) utimes <- as.numeric(utimes) (edited)

jonathon:whale2: 5 hours ago yup, this will do it too: as.numeric(strsplit(utimes, ‘,’)[[1]]) (it’s better if you can avoid using purrr, because it’s not really necessary, and you’re better off reducing the amount of dependencies you use)

Serdar Balci 5 hours ago thank you. :+1:


so wrt width/height, you can set that in the .r.yaml like so: https://github.com/kylehamilton/MAJOR/blob/master/jamovi/bayesmetacorr.r.yaml#L46-L49 it’s possible to do it programmatically, with … image$setSize()


Serdar Balci  4:48 PM
 I think I am getting familiar with the codes :)
QuickTime Movie
JamoviModule.mov
4 MB QuickTime Movie— Click to download
Serdar Balci Nov 29th, 2019 at 12:39 PM
Module names now have R version and OS in them. Does it mean that this will not work in windows Installing ClinicoPath_0.0.1-macos-R3.3.0.jmo

4 replies

jonathon:whale2:  3 months ago
It depends on whether there are any native R packages in your modules dependencies. Most modules do, but some don't. (You'll notice there's a "uses native" property there now too ... my intention is to use that to determine if a module can be used cross platform or not)

jonathon:whale2:  3 months ago
If there's native dependencies, then the module needs to be built separately for each os.

jonathon:whale2:  3 months ago
But I can take care of building it for different oses

Serdar Balci  3 months ago
Oh, I see. Thank you :slightly_smiling_face:

Develop

library, eval=FALSE, include=FALSE
# install.packages('jmvtools', repos=c('https://repo.jamovi.org', 'https://cran.r-project.org'))

# jmvtools::check("C://Program Files//jamovi//bin")

# jmvtools::install(home = "C://Program Files//jamovi//bin")
#
# devtools::build(path = "C:\\ClinicoPathOutput")

# .libPaths(new = "C:\\ClinicoPathLibrary")

# devtools::build(path = "C:\\ClinicoPathOutput", binary = TRUE, args = c('--preclean'))

Sys.setenv(TZ="Europe/Istanbul")

library("jmvtools")

check, eval=FALSE, include=FALSE

jmvtools::check()

# rhub::check_on_macos()

# rhub::check_for_cran()

# codemetar::write_codemeta()


devtools::check()
pkgdown build, eval=FALSE, include=FALSE
rmarkdown::render('/Users/serdarbalciold/histopathRprojects/ClinicoPath/README.Rmd',  encoding = 'UTF-8', knit_root_dir = '~/histopathRprojects/ClinicoPath', quiet = TRUE)

devtools::document()

pkgdown::build_site()
git force push, eval=FALSE, include=FALSE
# gitUpdateCommitPush
CommitMessage <- paste("updated on ", Sys.time(), sep = "")
wd <- getwd()
gitCommand <- paste("cd ", wd, " \n git add . \n git commit --message '", CommitMessage, "' \n git push origin master \n", sep = "")
# gitCommand <- paste("cd ", wd, " \n git add . \n git commit --no-verify --message '", CommitMessage, "' \n git push origin master \n", sep = "")
system(command = gitCommand, intern = TRUE)
add analysis, eval=FALSE, include=FALSE

# jmvtools::install()
#
# jmvtools::create('SuperAwesome')
#
# jmvtools::addAnalysis(name='ttest', title='Independent Samples T-Test')
#
# jmvtools::addAnalysis(name='survival', title='survival')
#
# jmvtools::addAnalysis(name='correlation', title='correlation')
#
# jmvtools::addAnalysis(name='tableone', title='TableOne')
#
# jmvtools::addAnalysis(name='crosstable', title='CrossTable')
#
#
# jmvtools::addAnalysis(name='writesummary', title='WriteSummary')

# jmvtools::addAnalysis(name='finalfit', title='FinalFit')

# jmvtools::addAnalysis(name='multisurvival', title='FinalFit Multivariate Survival')

# jmvtools::addAnalysis(name='report', title='Report General Features')

# jmvtools::addAnalysis(name='frequencies', title='Frequencies')

# jmvtools::addAnalysis(name='statsplot', title='GGStatsPlot')

# jmvtools::addAnalysis(name='statsplot2', title='GGStatsPlot2')

# jmvtools::addAnalysis(name='scat2', title='scat2')

# jmvtools::addAnalysis(name='decisioncalculator', title='Decision Calculator')

# jmvtools::addAnalysis(name='agreement', title='Interrater Intrarater Reliability')

# jmvtools::addAnalysis(name='cluster', title='Cluster Analysis')

# jmvtools::addAnalysis(name='tree', title='Decision Tree')
devtools install, eval=FALSE, include=FALSE
devtools::install()
jmvtools install, eval=FALSE, include=FALSE
# jmvtools::check()
jmvtools::install()
construct, eval=FALSE, include=FALSE
formula <- jmvcore::constructFormula(terms = c("A", "B", "C"), dep = "D")

jmvcore::constructFormula(terms = list("A", "B", c("C", "D")), dep = "E")


jmvcore::constructFormula(terms = list("A", "B", "C"))

vars <- jmvcore::decomposeFormula(formula = formula)

unlist(vars)

cformula <- jmvcore::composeTerm(components = formula)

jmvcore::composeTerm("A")

jmvcore::composeTerm(components = c("A", "B", "C"))

jmvcore::decomposeTerm(term = c("A", "B", "C"))

jmvcore::decomposeTerm(term = formula)

jmvcore::decomposeTerm(term = cformula)



composeTerm <- jmvcore::composeTerm(components = c("A", "B", "C"))

jmvcore::decomposeTerm(term = composeTerm)

Example

read data, eval=FALSE, include=FALSE
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
writesummary, eval=FALSE, include=FALSE
devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

# library("ClinicoPath")

deneme$Age <- as.numeric(as.character(deneme$Age))

ClinicoPath::writesummary(data = deneme, vars = Age)

ggstatsplot::normality_message(deneme$Age, "Age")


ClinicoPath::writesummary(
    data = deneme,
    vars = Age)
finalfit, eval=FALSE, include=FALSE
devtools::install(upgrade = FALSE, quick = TRUE)
library(dplyr)
library(survival)
library(finalfit)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ClinicoPath::finalfit(data = deneme,
                      explanatory = Sex,
                      outcome = Outcome,
                      overalltime = OverallTime)
decision, eval=FALSE, include=FALSE
devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

ClinicoPath::decision(
    data = deneme,
    gold = Outcome,
    goldPositive = "1",
    newtest = Smoker,
    testPositive = "TRUE")

ClinicoPath::decision(
    data = deneme,
    gold = LVI,
    goldPositive = "Present",
    newtest = PNI,
    testPositive = "Present")
eval=FALSE, include=FALSE
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ggstatsplot::ggbetweenstats(data = deneme,
                            x = LVI,
                            y = Age)
statsplot, eval=FALSE, include=FALSE
devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ClinicoPath::statsplot(
    data = deneme,
    dep = Age,
    group = Smoker)
decision 2, eval=FALSE, include=FALSE
mytable <- table(deneme$Outcome, deneme$Smoker)

caret::confusionMatrix(mytable)
confusionMatrix(pred, truth)
confusionMatrix(xtab, prevalence = 0.25)

levels(deneme$Outcome)

mytable[1,2]

d <- "0"

mytable[d, "FALSE"]

mytable[[0]]
construct formula, eval=FALSE, include=FALSE
formula <- jmvcore::constructFormula(terms = c("A", "B", "C"))

jmvcore::constructFormula(terms = list("A", "B", "C"))

vars <- jmvcore::decomposeFormula(formula = formula)

vars <- jmvcore::decomposeTerms(vars)


vars <- unlist(vars)

formula <- as.formula(formula)


my_group <- "lvi"
my_dep <- "age"

formula <- paste0('x = ', group, 'y = ', dep)
myformula <- as.formula(formula)

myformula <- glueformula::gf(my_group, my_dep)

myformula <- glue::glue( 'x = ' , my_group, ', y = ' , my_dep)

myformula <- jmvcore::composeTerm(myformula)
eval=FALSE, include=FALSE
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

library(survival)
km_fit <- survfit(Surv(OverallTime, Outcome) ~ LVI, data = deneme)

library(dplyr)
km_fit_median_df <- summary(km_fit)
km_fit_median_df <- as.data.frame(km_fit_median_df$table) %>%
                janitor::clean_names(dat = ., case = "snake") %>%
                tibble::rownames_to_column(.data = ., var = "LVI")
construct formula 2, eval=FALSE, include=FALSE
library(dplyr)
library(survival)

deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

myoveralltime <- deneme$OverallTime
myoutcome <- deneme$Outcome
myexplanatory <- deneme$LVI

class(myoveralltime)
class(myoutcome)
typeof(myexplanatory)

is.ordered(myexplanatory)

formula2 <- jmvcore::constructFormula(terms = "myexplanatory")
# formula2 <- jmvcore::decomposeFormula(formula = formula2)
# formula2 <- paste("", formula2)
# formula2 <- as.formula(formula2)
formula2 <- jmvcore::composeTerm(formula2)


formulaL <- jmvcore::constructFormula(terms = "myoveralltime")
# formulaL <- jmvcore::decomposeFormula(formula = formulaL)

formulaR <- jmvcore::constructFormula(terms = "myoutcome")
# formulaR <- jmvcore::decomposeFormula(formula = formulaR)

formula <- paste("Surv(", formulaL, ",", formulaR, ")")
# formula <- jmvcore::composeTerm(formula)
# formula <- as.formula(formula)
# jmvcore::constructFormula(terms = c(formula, formula2))

deneme %>%
  finalfit::finalfit(formula, formula2) -> tUni

tUni
eval=FALSE, include=FALSE
library(dplyr)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

results <- deneme %>%
                ggstatsplot::ggbetweenstats(LVI, Age)
results

mydep <- deneme$Age
mygroup <- deneme$LVI


mygroup <- jmvcore::constructFormula(terms = "mygroup")
mygroup <- jmvcore::composeTerm(mygroup)

mydep <- jmvcore::constructFormula(terms = "mydep")
mydep <- jmvcore::composeTerm(mydep)


# not working
# eval(mygroup)
# rlang::eval_tidy(mygroup)
# !!mygroup
# mygroup
# sym(mygroup)
# quote(mygroup)
# enexpr(mygroup)

mygroup <- jmvcore::constructFormula(terms = "mygroup")
mydep <- jmvcore::constructFormula(terms = "mydep")

formula1 <- paste(mydep)
formula1 <- jmvcore::composeTerm(formula1)


mygroup <- paste(mygroup)
mygroup <- jmvcore::composeTerm(mygroup)

mydep <- deneme$Age
mygroup <- deneme$LVI

mydep <- jmvcore::resolveQuo(jmvcore::enquo(mydep))
mygroup <- jmvcore::resolveQuo(jmvcore::enquo(mygroup))

mydata2 <- data.frame(mygroup=mygroup, mydep=mydep)

results <- mydata2 %>%
                ggstatsplot::ggbetweenstats(
x = mygroup, y = mydep  )

results



myformula <- glue::glue('x = ', mygroup, ', y = ' , mydep)

myformula <- jmvcore::composeTerm(myformula)

myformula <- as.formula(myformula)


mydep2 <- quote(mydep)
mygroup2 <- quote(mygroup)


results <- deneme %>%
                ggstatsplot::ggbetweenstats(!!mygroup2, !!mydep2)
results
construct formula 3, eval=FALSE, include=FALSE
formula <- jmvcore::constructFormula(terms = c("myoveralltime", "myoutcome"))

vars <- jmvcore::decomposeFormula(formula = formula)


explanatory <- jmvcore::constructFormula(terms = c("explanatory"))

explanatory <- jmvcore::decomposeFormula(formula = explanatory)

explanatory <- unlist(explanatory)

myformula <- paste("Surv(", vars[1], ", ", vars[2], ")")



deneme %>%
finalfit::finalfit(myformula, explanatory) -> tUni
table tangram, eval=FALSE, include=FALSE
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))


table3 <-
  tangram::html5(
    tangram::tangram(
      "Death ~ LVI + PNI + Age", deneme),
    fragment=TRUE,
    inline="nejm.css",
    caption = "HTML5 Table NEJM Style",
    id="tbl3")

table3

mydep <- deneme$Age
mygroup <- deneme$Death


formulaR <- jmvcore::constructFormula(terms =  c("LVI", "PNI", "Age"))

formulaL <- jmvcore::constructFormula(terms = "Death")

formula <- paste(formulaL, '~', formulaR)

formula <- as.formula(formula)


table <- tangram::html5(
    tangram::tangram(formula, deneme
                     ))

table

arsenal

arsenal, results='asis', eval=FALSE, include=FALSE

tab1 <- arsenal::tableby(~ Age + Sex, data = deneme)

results <- summary(tab1)


# results$object
# results$control
# results$totals
# results$hasStrata
# results$text
# results$pfootnote
# results$term.name
#
# tab1$Call
#
# tab1$control

tab1$tables # this is where results lie

define survival time

define survival time, eval=FALSE, include=FALSE
mydata$int <- lubridate::interval(
  lubridate::ymd(mydata$SurgeryDate),
  lubridate::ymd(mydata$LastFollowUpDate)
  )
mydata$OverallTime <- lubridate::time_length(mydata$int, "month")
mydata$OverallTime <- round(mydata$OverallTime, digits = 1)

Multivariate Analysis Survival

Multivariate Analysis, eval=FALSE, include=FALSE
library(finalfit)
library(survival)
explanatoryMultivariate <- explanatoryKM
dependentMultivariate <- dependentKM

mydata %>%
  finalfit(dependentMultivariate, explanatoryMultivariate) -> tMultivariate

knitr::kable(tMultivariate, row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))

eval=FALSE, include=FALSE
# Find arguments in yaml

list_of_yaml <- c(
    list.files(path = "~/histopathRprojects/ClinicoPath-Jamovi--prep/jmv",
               pattern = "\\.yaml$",
               full.names = TRUE,
               all.files = TRUE,
               include.dirs = TRUE,
               recursive = TRUE
    )
)


text_of_yaml_yml <- purrr::map(
    .x = list_of_yaml,
    .f = readLines
)

text_of_yaml_yml <- as.vector(unlist(text_of_yaml_yml))

arglist <-
    stringr::str_extract(
        string = text_of_yaml_yml,
        pattern =
            "([[:alnum:]]*):"
    )

arglist <- arglist[!is.na(arglist)]
arglist <- unique(arglist)
arglist <- gsub(pattern = ":", # remove some characters
                    replacement = "",
                    x = arglist)
arglist <- trimws(arglist) # remove whitespace

cat(arglist, sep = "\n")
#
#                 # tUni_df_descr <- paste0("When ",
#                 #                         tUni_df$dependent_surv_overall_time_outcome[1],
#                 #                         " is ",
#                 #                         tUni_df$x[2],
#                 #                         ", there is ",
#                 #                         tUni_df$hr_univariable[2],
#                 #                         " times risk than ",
#                 #                         "when ",
#                 #                         tUni_df$dependent_surv_overall_time_outcome[1],
#                 #                         " is ",
#                 #                         tUni_df$x[1],
#                 #                         "."
#                 # )
#
#                 # results5 <- tUni_df_descr
eval=FALSE, include=FALSE
boot::melanoma
rio::export(x = boot::melanoma, file = "data/melanoma.csv")

survival::colon
rio::export(x = survival::colon, file = "data/colon.csv")

# BreastCancerData <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data"
#
# BreastCancerNames <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.names"
#
# BreastCancerData <- read.csv(file = BreastCancerData, header = FALSE,
#                 col.names = c("id","CT", "UCSize", "UCShape", "MA", "SECS", "BN", "BC", "NN","M", "diagnosis") )

library(mlbench)

data("BreastCancer")
BreastCancer

rio::export(x = BreastCancer, file = "data/BreastCancer.csv")
pairwise, eval=FALSE, include=FALSE
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
# names(deneme)

mypairwise <-  survminer::pairwise_survdiff(
                            formula = survival::Surv(OverallTime, Outcome) ~ TStage,
                            data = deneme,
                            p.adjust.method = "BH"
                            )


mypairwise2 <- as.data.frame(mypairwise[["p.value"]]) %>%
  tibble::rownames_to_column()

mypairwise2 %>%
  tidyr::pivot_longer(cols = -rowname) %>%
  dplyr::filter(complete.cases(.)) %>%
  dplyr::mutate(description =
                            glue::glue(
                                "The comparison between rowname and name has a p-value of round(value, 2)."
                            )
                    ) %>%
                    dplyr::select(description) %>%
                    dplyr::pull() -> mypairwisedescription

mypairwisedescription <- unlist(mypairwisedescription)

mypairwisedescription <- c(
"In the pairwise comparison of",
mypairwisedescription)

Diagrams

echo=FALSE
DiagrammeR::grViz(
  diagram = here::here("vignettes/graph.gv"),
  height = 200
)
eval=FALSE, include=FALSE, echo=FALSE
DiagrammeR::mermaid(
  diagram = here::here("vignettes/graph.mmd"),
  height = 200
)


Remotes:

    easystats/correlation,
    easystats/report

# Future Works:

## ndphillips/FFTrees

            # gtsummary

            # myvars <- jmvcore::constructFormula(terms = self$options$vars)
            # myvars <- jmvcore::decomposeFormula(formula = myvars)
            # myvars <- unlist(myvars)
            # mytableone2 <- self$data %>%
            #     dplyr::select(myvars)
            # mytableone2 <- gtsummary::tbl_summary(mytableone2)
            # self$results$text2$setContent(mytableone2)



    # - name: outcomeLevel
    #   title: |
    #       Select Event (Death, Recurrence)
    #   type: Level
    #   variable: (outcome)


,
arsenal,

rlang,
knitr,
remotes,
kableExtra,

caret,
irr
Remotes:


easystats/bayestestR,
easystats/performance,
easystats/parameters,
easystats/report
Suggests:
    effectsize,
emmeans,
rmarkdown,
igraph,
iterators,
rms,
commonmark,
sass


# #
# #
# #     if (is.null(self$options$dep) || is.null(self$options$group))
# #         return()
# #
# #     mydata <- self$data
# #
# #     mydep <- self$data[[self$options$dep]]
# #
# #     mygroup <- self$data[[self$options$group]]
# #
# #
# #     # klass <- print(
# #     #     list(
# #     #         "mydep" = c(typeof(mydep), class(mydep)),
# #     #         "mygroup" = c(typeof(mygroup), class(mygroup))
# #     #         )
# #     #     )
# #
# #
# #     # self$results$text1$setContent(klass)
# #
# #
# #     # plotData <- data.frame(gr = mygroup,
# #     #                        dp = mydep)
# #     # plotData <- jmvcore::naOmit(plotData)
# #     # mydata_changes <- plotData %>%
# #     #     dplyr::group_by(gr, dp) %>%
# #     #     dplyr::tally(x = .)
# #     #
# #     # self$results$text2$setContent(mydata_changes)
# #     #
# #     # plotData <- data.frame(gr = mygroup,
# #     #                        dp = mydep)
# #     #
# #     # plotData <- jmvcore::naOmit(plotData)
# #     #
# #     #
# #     # mydata_changes <- plotData %>%
# #     #     dplyr::group_by(gr, dp) %>%
# #     #     dplyr::tally(x = .)
# #     #
# #     #
# #     # deneme <- ggalluvial::is_alluvia_form(
# #     #     as.data.frame(mydata_changes),
# #     #     axes = 1:2, silent = TRUE)
# #
# #     # nodes = data.frame("name" =
# #     #                        c(self$options$group,
# #     #                          self$options$dep))
# #     #
# #     # links <- mydata_changes
# #     #
# #     # names(links) = c("source", "target", "value")
# #     #
# #     # deneme <- networkD3::sankeyNetwork(Links = links, Nodes = nodes,
# #     #                                  Source = "source", Target = "target",
# #     #                                  Value = "value", NodeID = "name",
# #     #                                  fontSize= 12, nodeWidth = 30)
# #
# #
# #
# #     # self$results$text3$setContent(deneme)
# #
# #
# #
# #
# #     # Prepare Data for Plot ----
# #
# #     direction <- self$options$direction
# #
# #     mydata <- self$data
# #
# #     mydep <- self$data[[self$options$dep]]
# #
# #     mygroup <- self$data[[self$options$group]]
# #
# #     contin <- c("integer", "numeric", "double")
# #     categ <- c("factor")
# #
# # # independent, factor, continuous ----
# # # ggbetweenstats    violin plots    for comparisons between groups/conditions
# #     if (direction == "independent" && class(mygroup) == "factor" && class(mydep) %in% contin) {
# #             plotData <- data.frame(gr = mygroup,
# #                                    dp = jmvcore::toNumeric(mydep))
# #
# #
# #
# #
# # # independent, continuous, continuous ----
# # # ggscatterstats    scatterplots    for correlations between two variables
# #
# #     if (direction == "independent" && class(mygroup) %in% contin && class(mydep) %in% contin) {
# #             plotData <- data.frame(gr = jmvcore::toNumeric(mygroup),
# #                                    dp = jmvcore::toNumeric(mydep))
# #
# #
# #
# #
# #
# # # independent, factor, factor ----
# # # ggbarstats    bar charts  for categorical data
# #     if (direction == "independent" && class(mygroup) == "factor" && class(mydep) == "factor") {
# #
# #             plotData <- data.frame(gr = mygroup,
# #                                    dp = mydep)
# #
# #
# #
# #     # independent, continuous, factor ----
# #
# #     if (direction == "independent" && class(mygroup) %in% contin && class(mydep) == "factor") {
# #
# #         stop("Please switch the values: factor variable should be on x-axis and continuous variable should be on y-axis")
# #         }
# #
# #
# #
# #     # repeated, factor, continuous ----
# #     # ggwithinstats     violin plots    for comparisons within groups/conditions
# #
# #
# #
# #     if (direction == "repeated" && class(mygroup) == "factor" && class(mydep) %in% contin) {
# #             plotData <- data.frame(gr = mygroup,
# #                                    dp = jmvcore::toNumeric(mydep))
# #
# #
# #
# #
# #     # repeated, continuous, continuous ----
# #     # rmcorr::rmcorr()
# #
# #
# #     if (direction == "repeated" && class(mygroup) %in% contin && class(mydep) %in% contin) {
# #
# #
# #         stop("Currently this module does not support repeated measures correlation.")
# #
# #     }
# #
# #
# #     # repeated, factor, factor ----
# #     # http://corybrunson.github.io/ggalluvial/
# #
# #     if (direction == "repeated" && class(mygroup) == "factor" && class(mydep) == "factor") {
# #             plotData <- data.frame(gr = mygroup,
# #                                    dp = mydep)
# #
# #
# #
# #     # repeated, continuous, factor ----
# #
# #     if (direction == "repeated" && class(mygroup) %in% contin && class(mydep) == "factor") {
# #
# 
# 
# 
# 
# 
# # Results ----
# 
# 
# 
# # Send Data to Plot ----
# 
# # plotData <- jmvcore::naOmit(plotData)
# # image <- self$results$plot
# # image$setState(plotData)
# 
# 
# # }
# 
# 
# # ,
# #
# # .plot = function(image, ...) {  # <-- the plot function ----
# #
# #
# #     if (is.null(self$options$dep) || is.null(self$options$group))
# #         return()
# #
# #
# #     plotData <- image$state
# #
# #     direction <- self$options$direction
# #
# #     mydata <- self$data
# #
# #     mydep <- self$data[[self$options$dep]]
# #
# #     mygroup <- self$data[[self$options$group]]
# #
# #     contin <- c("integer", "numeric", "double")
# #     categ <- c("factor")
# #
# #     # independent, factor, continuous ----
# #     # ggbetweenstats    violin plots    for comparisons between groups/conditions
# #
# #     if (direction == "independent" && class(mygroup) == "factor" && class(mydep) %in% contin) {
# #
# #             plot <- ggstatsplot::ggbetweenstats(
# #                 data = plotData,
# #                 x = gr,
# #                 y = dp
# #             )
# #         }
# #
# #     # independent, continuous, continuous ----
# #     # ggscatterstats    scatterplots    for correlations between two variables
# #
# #
# #         if (direction == "independent" && class(mygroup) %in% contin && class(mydep) %in% contin) {
# #
# #             plot <- ggstatsplot::ggscatterstats(
# #                 data = plotData,
# #                 x = gr,
# #                 y = dp
# #             )
# #
# #         }
# #
# #     # independent, factor, factor ----
# #     # ggbarstats    bar charts  for categorical data
# #
# #
# #     if (direction == "independent" && class(mygroup) == "factor" && class(mydep) == "factor") {
# #
# #
# #
# #             plot <- ggstatsplot::ggbarstats(
# #                                     data = plotData,
# #                                     main = gr,
# #                                     condition = dp
# #                                 )
# #         }
# #
# #     # repeated, factor, continuous ----
# #     # ggwithinstats     violin plots    for comparisons within groups/conditions
# #
# #
# # if (direction == "repeated" && class(mygroup) == "factor" && class(mydep) %in% contin) {
# #
# #
# #             plot <- ggstatsplot::ggwithinstats(
# #                 data = plotData,
# #                 x = gr,
# #                 y = dp
# #             )
# #
# #         }
# #
# #     # repeated, continuous, continuous ----
# #     # rmcorr::rmcorr()
# #
# #             # my.rmc <- rmcorr::rmcorr(participant = Subject,
# #             #                          measure1 = PacO2,
# #             #                          measure2 = pH,
# #             #                          dataset = rmcorr::bland1995)
# #             #
# #             # plot(my.rmc, overall = TRUE)
# #             #
# #             # ggplot2::ggplot(rmcorr::bland1995,
# #             #                 ggplot2::aes(x = PacO2,
# #             #                              y = pH,
# #             #                              group = factor(Subject),
# #             #                              color = factor(Subject)
# #             #                 )
# #             # ) +
# #             #     ggplot2::geom_point(ggplot2::aes(colour = factor(Subject))) +
# #             #     ggplot2::geom_line(ggplot2::aes(y = my.rmc$model$fitted.values), linetype = 1)
# #
# #
# #
# #     # repeated, factor, factor ----
# #     # http://corybrunson.github.io/ggalluvial/
# #     # networkD3
# #
# #
# #     if (direction == "repeated" && class(mygroup) == "factor" && class(mydep) == "factor") {
# #
# #
# #             mydata_changes <- plotData %>%
# #                 dplyr::group_by(gr, dp) %>%
# #                 dplyr::tally(x = .)
# #
# #
# #             # head(as.data.frame(UCBAdmissions), n = 12)
# #
# #             # ggalluvial::is_alluvia_form(
# #             #     as.data.frame(UCBAdmissions),
# #             #     axes = 1:3, silent = TRUE)
# #
# #
# #
# #             # plot <- ggplot(as.data.frame(UCBAdmissions),
# #             #        aes(y = Freq, axis1 = Gender, axis2 = Dept)) +
# #             #     geom_alluvium(aes(fill = Admit), width = 1/12) +
# #             #     geom_stratum(width = 1/12, fill = "black", color = "grey") +
# #             #     geom_label(stat = "stratum", infer.label = TRUE) +
# #             #     scale_x_discrete(limits = c("Gender", "Dept"), expand = c(.05, .05)) +
# #             #     scale_fill_brewer(type = "qual", palette = "Set1") +
# #             #     ggtitle("UC Berkeley admissions and rejections, by sex and department")
# #
# #
# #
# #
# #
# #             stratum <- ggalluvial::StatStratum
# #
# #             plot <- ggplot2::ggplot(data = mydata_changes,
# #                                     ggplot2::aes(axis1 = gr,
# #                        axis2 = dp,
# #                        y = n)) +
# #                 ggplot2::scale_x_discrete(limits = c(self$options$group, self$options$dep),
# #                                  expand = c(.1, .05)
# #                 ) +
# #                 ggplot2::xlab(self$options$group) +
# #                 ggalluvial::geom_alluvium(ggplot2::aes(fill = gr,
# #                                   colour = gr
# #                 )) +
# #                 ggalluvial::geom_stratum() +
# #                 ggalluvial::stat_stratum(geom = "stratum") +
# #                 ggplot2::geom_label(stat = stratum, infer.label = TRUE) +
# #
# #                 # ggalluvial::geom_stratum(stat = "stratum", label.strata = TRUE) +
# #                 # ggplot2::geom_text(stat = "stratum", infer.label = TRUE) +
# #                 # ggplot2::geom_text(label.strata = TRUE) +
# #                 # ggalluvial::geom_stratum()
# #                 ggplot2::theme_minimal()
# #                 # ggplot2::ggtitle(paste0("Changes in ", self$options$group))
# #             #
# #             #
# #             # nodes = data.frame("name" =
# #             #                        c(self$options$group,
# #             #                          self$options$dep))
# #             #
# #             # links <- mydata_changes
# #             #
# #             # names(links) = c("source", "target", "value")
# #             #
# #             # plot <- networkD3::sankeyNetwork(Links = links, Nodes = nodes,
# #             #               Source = "source", Target = "target",
# #             #               Value = "value", NodeID = "name",
# #             #               fontSize= 12, nodeWidth = 30)
# #
# #             # library(networkD3)
# #             # nodes = data.frame("name" =
# #             #                        c("Node A", # Node 0
# #             #                          "Node B", # Node 1
# #             #                          "Node C", # Node 2
# #             #                          "Node D"))# Node 3
# #             # links = as.data.frame(matrix(c(
# #             #     0, 1, 10, # Each row represents a link. The first number
# #             #     0, 2, 20, # represents the node being conntected from.
# #             #     1, 3, 30, # the second number represents the node connected to.
# #             #     2, 3, 40),# The third number is the value of the node
# #             #     byrow = TRUE, ncol = 3))
# #             # names(links) = c("source", "target", "value")
# #             # sankeyNetwork(Links = links, Nodes = nodes,
# #             #               Source = "source", Target = "target",
# #             #               Value = "value", NodeID = "name",
# #             #               fontSize= 12, nodeWidth = 30)
# #
# #             # plot <- c("Under Construction")
# #
# #             # plot <- list(plot1,
# #             #              plot2)
# #
# #
# #
# #         }
# #
# #
# #
# #     print(plot)
# #     TRUE
# #
# # }
# #
# #         )
# # )


# Packages


Imports: 
    jmvcore (>= 0.8.5),
    R6,
    dplyr,
    survival,
    survminer,
    finalfit,
    arsenal,
    purrr,
    glue,
    janitor,
    ggplot2,
    forcats,
    ggstatsplot,
    tableone,
    explore,
    tangram,
    irr,
    rlang,
    tidyselect,
    knitr



Remotes:
    easystats/correlation,
    neuropsychology/psycho.R@0.4.0


Suggests:
    rmarkdown,
    remotes,
    devtools,
    lubridate,
    broom, 
    GGally, 
    gridExtra, 
    Hmisc, 
    lme4, 
    magrittr, 
    mice, 
    pillar, 
    pROC, 
    scales, 
    stringr, 
    tibble, 
    tidyr, 
    covr, 
    cmprsk, 
    readr, 
    rstan, 
    survey, 
    testthat, 
    backports, 
    generics, 
    assertthat, 
    pkgconfig, 
    Rcpp, 
    BH, 
    plogr, 
    ellipsis, 
    gtable, 
    progress, 
    RColorBrewer, 
    reshape, 
    digest, 
    lazyeval, 
    viridisLite, 
    withr, 
    Formula, 
    latticeExtra, 
    acepack, 
    data.table, 
    htmlTable, 
    viridis, 
    htmltools, 
    base64enc, 
    minqa, 
    nloptr, 
    RcppEigen, 
    mitml, 
    cli, 
    crayon, 
    fansi, 
    utf8, 
    vctrs, 
    farver, 
    labeling, 
    munsell, 
    lifecycle, 
    stringi, 
    ggpubr, 
    maxstat, 
    survMisc, 
    jsonlite, 
    rex, 
    evaluate, 
    highr, 
    markdown, 
    xfun, 
    hms, 
    clipr, 
    mime, 
    tinytex, 
    StanHeaders, 
    inline, 
    loo, 
    pkgbuild, 
    numDeriv, 
    mitools, 
    pkgload, 
    praise, 
    zeallot, 
    colorspace, 
    prettyunits, 
    checkmate, 
    htmlwidgets, 
    pan, 
    jomo, 
    ordinal, 
    ucminf, 
    ggrepel,
    ggsci, 
    cowplot, 
    ggsignif,
    polynom, 
    exactRankTests,
    mvtnorm, 
    KMsurv, 
    zoo, 
    km.ci,
    xtable,
    curl, 
    openssl, 
    askpass, 
    sys, 
    matrixStats,
    callr, 
    desc,
    rprojroot,
    processx, 
    ps, 
    DBI,
    png, 
    jpeg, 
    boot, 
    grid, 
    snakecase,
    caret,
    iterators,
    timeDate,
    foreach,
    plyr,
    ModelMetrics,
    nlme,
    reshape2,
    recipes,
    BradleyTerry2,
    e1071,
    earth,
    fastICA,
    gam,
    ipred,
    kernlab,
    klaR,
    MASS,
    ellipse,
    mda,
    mgcv,
    mlbench,
    MLmetrics,
    nnet,
    party,
    pls,
    proxy,
    randomForest,
    RANN,
    spls,
    subselect,
    pamr,
    superpc,
    Cubist,
    rpart,
    qgraph,
    nFactors,
    ppcor,
    rstanarm,
    MuMIn,
    blavaan,
    
    
    
    
    



# Develop



# install.packages('jmvtools', repos=c('https://repo.jamovi.org', 'https://cran.r-project.org'))

# jmvtools::check("C://Program Files//jamovi//bin")

# jmvtools::install(home = "C://Program Files//jamovi//bin")
# 
# jmvtools::install(pkg = "C://ClinicoPath", home = "C://Program Files//jamovi//bin")

# devtools::build(path = "C:\\ClinicoPathOutput")

# .libPaths(new = "C:\\ClinicoPathLibrary")

# devtools::build(path = "C:\\ClinicoPathOutput", binary = TRUE, args = c('--preclean'))

Sys.setenv(TZ = "Europe/Istanbul")

library("jmvtools")

jmvtools::check()

# rhub::check_on_macos()

# rhub::check_for_cran()

# codemetar::write_codemeta()


devtools::check()


# From CRAN
# install.packages("attachment")
# From github
# remotes::install_github("ThinkR-open/attachment")

# If you correctly called the package dependencies in the {roxygen2} skeleton, in your functions, in your Rmarkdown vignettes and in your tests, you only need to run attachment::att_to_description()just before devtools::check(). And that’s it, there is nothing else to remember !
# attachment::att_to_description()



devtools::document()

codemetar::write_codemeta()

# rmarkdown::render('/Users/serdarbalciold/histopathRprojects/ClinicoPath/README.Rmd',  encoding = 'UTF-8', knit_root_dir = '~/histopathRprojects/ClinicoPath', quiet = TRUE)


pkgdown::build_articles()
# pkgdown::build_favicons()
pkgdown::build_home()
pkgdown::build_news()
pkgdown::build_reference()
# pkgdown::build_reference_index()
# pkgdown::build_tutorials()

pkgdown::build_site()

# devtools::github_release()


# gitUpdateCommitPush
CommitMessage <- paste("updated on ", Sys.time(), sep = "")
wd <- getwd()
gitCommand <- paste("cd ", wd, " \n git add . \n git commit --message '", CommitMessage, "' --no-verify \n git push origin master \n", sep = "")
# gitCommand <- paste("cd ", wd, " \n git add . \n git commit --no-verify --message '", CommitMessage, "' \n git push origin master \n", sep = "")
system(command = gitCommand, intern = TRUE)



# jmvtools::install()
# 
# jmvtools::create('SuperAwesome')
# 
# jmvtools::addAnalysis(name='ttest', title='Independent Samples T-Test')
# 
# jmvtools::addAnalysis(name='survival', title='survival')
# 
# jmvtools::addAnalysis(name='correlation', title='correlation')
# 
# jmvtools::addAnalysis(name='tableone', title='TableOne')
# 
# jmvtools::addAnalysis(name='crosstable', title='CrossTable')
# 
# 
# jmvtools::addAnalysis(name='writesummary', title='WriteSummary')

# jmvtools::addAnalysis(name='finalfit', title='FinalFit')

# jmvtools::addAnalysis(name='multisurvival', title='FinalFit Multivariate Survival')

# jmvtools::addAnalysis(name='report', title='Report General Features')

# jmvtools::addAnalysis(name='frequencies', title='Frequencies')

# jmvtools::addAnalysis(name='statsplot', title='GGStatsPlot')

# jmvtools::addAnalysis(name='statsplot2', title='GGStatsPlot2')

# jmvtools::addAnalysis(name='statsplotbetween', title='Stats Plot Between')

# jmvtools::addAnalysis(name='competingsurvival', title='Competing Survival')


# jmvtools::addAnalysis(name='scat2', title='scat2')

# jmvtools::addAnalysis(name='decisioncalculator', title='Decision Calculator')

# jmvtools::addAnalysis(name='agreement', title='Interrater Intrarater Reliability')

# jmvtools::addAnalysis(name='cluster', title='Cluster Analysis')

# jmvtools::addAnalysis(name='tree', title='Decision Tree')
# 
# jmvtools::addAnalysis(name='oddsratio', title='Odds Ratio Table and Plot')

# jmvtools::addAnalysis(name='roc', title='ROC')

# jmvtools::addAnalysis(name = "icccoeff", title = "ICC coefficients")

# jmvtools::addAnalysis(name = "gtsummary", title = "Tables via gtsummary")

# jmvtools::addAnalysis(name = "alluvial", title = "Alluvial Diagrams")



Sys.unsetenv("R_PROFILE_USER")
devtools::check()

devtools::install()

# jmvtools::check()
jmvtools::install()

formula <- jmvcore::constructFormula(terms = c("A", "B", "C"), dep = "D")

jmvcore::constructFormula(terms = list("A", "B", c("C", "D")), dep = "E")

jmvcore::constructFormula(terms = "A B")


jmvcore::constructFormula(terms = list("A", "B", "C"))

vars <- jmvcore::decomposeFormula(formula = formula) 

unlist(vars)

cformula <- jmvcore::composeTerm(components = formula)

jmvcore::composeTerm("A B")

jmvcore::composeTerm(components = c("A", "B", "C"))

jmvcore::decomposeTerm(term = c("A", "B", "C"))

jmvcore::decomposeTerm(term = formula)

jmvcore::decomposeTerm(term = cformula)



composeTerm <- jmvcore::composeTerm(components = c("A", "B", "C"))

jmvcore::decomposeTerm(term = composeTerm)




BreastCancer <- readr::read_csv(file = "/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/BreastCancer.csv")

usethis::use_data(BreastCancer)

BreastCancer <- readr::read_csv(file = "/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/BreastCancer.csv")

usethis::use_data(BreastCancer)

colon <- readr::read_csv(file = 
"/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/colon.csv")

usethis::use_data(colon)


melanoma <- readr::read_csv(file = 
"/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/melanoma.csv")

usethis::use_data(melanoma)


rocdata <- readr::read_csv(file = 
"/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/rocdata.csv")

usethis::use_data(rocdata)

histopathology <- readr::read_csv(file = 
"/Users/serdarbalciold/histopathRprojects/ClinicoPath/data/histopathology.csv")

usethis::use_data(histopathology)




## force git


# gitUpdateCommitPush
CommitMessage <- paste("updated on ", Sys.time(), sep = "")
wd <- getwd()
gitCommand <- paste("cd ", wd, " \n git add . \n git commit --message '", CommitMessage, "' \n git push origin master \n", sep = "")
system(command = gitCommand, intern = TRUE)




## update project for release



readyfunctions <- c(
    "refs",
    # "^agreement",
    # "^competingsurvival",
    # "^correlation",
    "^crosstable",
    # "^decision",
    # "^decisioncalculator",
    # "^icccoeff",
    "^multisurvival",
    "^oddsratio",
    # "^pairchi2",
    "^reportcat",
    # "^roc",
    "^statsplot2",
    "^summarydata",
    "^survival",
    "^tableone"
    # "^tree",
    # "^utils-pipe"
    # "^vartree"
)


readyfunctions <- paste0(readyfunctions, collapse = "|")

files_R <-
    list.files(path = here::here("R"),
               pattern = readyfunctions,
               full.names = TRUE)

files_jamovi <-
    list.files(
        path = here::here("jamovi"),
        pattern = readyfunctions,
        full.names = TRUE
    )

files_data <-
    list.files(
        path = here::here("data"),
        full.names = TRUE
    )


file.copy(from = files_R,
          to = "~/ClinicoPath/R/",
          overwrite = TRUE)


file.copy(from = files_jamovi,
          to = "~/ClinicoPath/jamovi/",
          overwrite = TRUE)


file.copy(from = files_data,
          to = "~/ClinicoPath/data/",
          overwrite = TRUE)

file.copy(from = files_data,
          to = "~/histopathRprojects/ClinicoPath/inst/extdata/",
          overwrite = TRUE)


# Example



deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

library(magrittr)

corx <- deneme %>%
                dplyr::select(Age, OverallTime) %>% 
                stats::cor(method = "spearman") %>%
                report::report()











inherits(deneme$Sex, "character")



ggstatsplot::ggbetweenstats(data = deneme,
                            x = Sex,
                            y = Age,
                            type = "p")

ClinicoPath::statsplot2(
    data = deneme,
    dep = Age,
    group = Sex)






devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

# library("ClinicoPath")

deneme$Age <- as.numeric(as.character(deneme$Age))

ClinicoPath::writesummary(data = deneme, vars = Age)

ggstatsplot::normality_message(deneme$Age, "Age")


ClinicoPath::writesummary(
    data = deneme,
    vars = Age)


devtools::install(upgrade = FALSE, quick = TRUE)
library(dplyr)
library(survival)
library(finalfit)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ClinicoPath::finalfit(data = deneme,
                      explanatory = Sex,
                      outcome = Outcome,
                      overalltime = OverallTime)

devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

ClinicoPath::decision(
    data = deneme,
    gold = Outcome,
    goldPositive = "1",
    newtest = Smoker,
    testPositive = "TRUE")

ClinicoPath::decision(
    data = deneme,
    gold = LVI,
    goldPositive = "Present",
    newtest = PNI,
    testPositive = "Present")

deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ggstatsplot::ggbetweenstats(data = deneme, 
                            x = LVI,
                            y = Age)



devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
ClinicoPath::statsplot(
    data = deneme,
    dep = Age,
    group = Smoker)

mytable <- table(deneme$Outcome, deneme$Smoker)

caret::confusionMatrix(mytable)
confusionMatrix(pred, truth)
confusionMatrix(xtab, prevalence = 0.25)

levels(deneme$Outcome)

mytable[1,2]

d <- "0"

mytable[d, "FALSE"]

mytable[[0]]


formula <- jmvcore::constructFormula(terms = c("A", "B", "C"))

jmvcore::constructFormula(terms = list("A", "B", "C"))

vars <- jmvcore::decomposeFormula(formula = formula) 

vars <- jmvcore::decomposeTerms(vars)


vars <- unlist(vars)

formula <- as.formula(formula)


my_group <- "lvi"

jmvcore::composeTerm(my_group)


my_dep <- "age"

formula <- paste0('x = ', group, 'y = ', dep)
myformula <- as.formula(formula)

myformula <- glueformula::gf({my_group}, {my_dep})

myformula <- glue::glue( 'x = ' , {my_group}, ', y = ' , {my_dep})

myformula <- jmvcore::composeTerm(myformula)



deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

library(survival)
km_fit <- survfit(Surv(OverallTime, Outcome) ~ LVI, data = deneme)

library(dplyr)
km_fit_median_df <- summary(km_fit)
km_fit_median_df <- as.data.frame(km_fit_median_df$table) %>%
                janitor::clean_names(dat = ., case = "snake") %>%
                tibble::rownames_to_column(.data = ., var = "LVI")


library(dplyr)
library(survival)

deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

myoveralltime <- deneme$OverallTime
myoutcome <- deneme$Outcome
myexplanatory <- deneme$LVI

class(myoveralltime)
class(myoutcome)
typeof(myexplanatory)

is.ordered(myexplanatory)

formula2 <- jmvcore::constructFormula(terms = "myexplanatory")
# formula2 <- jmvcore::decomposeFormula(formula = formula2)
# formula2 <- paste("", formula2)
# formula2 <- as.formula(formula2)
formula2 <- jmvcore::composeTerm(formula2)


formulaL <- jmvcore::constructFormula(terms = "myoveralltime")
# formulaL <- jmvcore::decomposeFormula(formula = formulaL)

formulaR <- jmvcore::constructFormula(terms = "myoutcome")
# formulaR <- jmvcore::decomposeFormula(formula = formulaR)

formula <- paste("Surv(", formulaL, ",", formulaR, ")")
# formula <- jmvcore::composeTerm(formula)
# formula <- as.formula(formula)
# jmvcore::constructFormula(terms = c(formula, formula2))

deneme %>%
  finalfit::finalfit(formula, formula2) -> tUni

tUni

library(dplyr)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

results <- deneme %>%
                ggstatsplot::ggbetweenstats(LVI, Age)
results

mydep <- deneme$Age
mygroup <- deneme$LVI


mygroup <- jmvcore::constructFormula(terms = "mygroup")
mygroup <- jmvcore::composeTerm(mygroup)

mydep <- jmvcore::constructFormula(terms = "mydep")
mydep <- jmvcore::composeTerm(mydep)


# not working
# eval(mygroup)
# rlang::eval_tidy(mygroup)
# !!mygroup
# {{mygroup}}
# sym(mygroup)
# quote(mygroup)
# enexpr(mygroup)

mygroup <- jmvcore::constructFormula(terms = "mygroup")
mydep <- jmvcore::constructFormula(terms = "mydep")

formula1 <- paste(mydep)
formula1 <- jmvcore::composeTerm(formula1)


mygroup <- paste(mygroup)
mygroup <- jmvcore::composeTerm(mygroup)

mydep <- deneme$Age
mygroup <- deneme$LVI

mydep <- jmvcore::resolveQuo(jmvcore::enquo(mydep))
mygroup <- jmvcore::resolveQuo(jmvcore::enquo(mygroup))

mydata2 <- data.frame(mygroup=mygroup, mydep=mydep)

results <- mydata2 %>%
                ggstatsplot::ggbetweenstats(
x = mygroup, y = mydep  )

results



myformula <- glue::glue('x = ', {mygroup}, ', y = ' , {mydep})

myformula <- jmvcore::composeTerm(myformula)

myformula <- as.formula(myformula)



mydep2 <- quote(mydep)
mygroup2 <- quote(mygroup)


results <- deneme %>%
                ggstatsplot::ggbetweenstats(!!mygroup2, !!mydep2)
results


formula <- jmvcore::constructFormula(terms = c("myoveralltime", "myoutcome"))

vars <- jmvcore::decomposeFormula(formula = formula) 


explanatory <- jmvcore::constructFormula(terms = c("explanatory"))    

explanatory <- jmvcore::decomposeFormula(formula = explanatory)

explanatory <- unlist(explanatory)

myformula <- paste("Surv(", vars[1], ", ", vars[2], ")")



deneme %>%
finalfit::finalfit(myformula, explanatory) -> tUni


deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))


table3 <-
  tangram::html5(
    tangram::tangram(
      "Death ~ LVI + PNI + Age", deneme),
    fragment=TRUE,
    # style = "hmisc",
    style = "nejm",
    # inline="nejm.css",
    caption = "HTML5 Table",
    id="tbl3")

table3

mydep <- deneme$Age
mygroup <- deneme$Death


formulaR <- jmvcore::constructFormula(terms =  c("LVI", "PNI", "Age"))

formulaL <- jmvcore::constructFormula(terms = "Death")

formula <- paste(formulaL, '~', formulaR)

# formula <- as.formula(formula)

sty <- jmvcore::composeTerm(components = "nejm")

gr <- jmvcore::composeTerm(components = "Death")


table <- tangram::html5(
    tangram::tangram(formula, deneme
                     ),
    fragment=TRUE,
    # style = "hmisc",
    # style = "nejm",
    style = sty,
    # inline="nejm.css",
    caption = paste0("HTML5 Table ", gr),
    id="tbl4")

table



deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))


mydata <- deneme

formula2 <- jmvcore::constructFormula(terms = c("LVI", "PNI", "Age"))

formulaR <- jmvcore::constructFormula(terms = "Death")

formulaR <- jmvcore::toNumeric(formulaR)



plot <-
                finalfit::or_plot(
                    .data = mydata,
                    dependent = formulaR,
                    explanatory = formula2,
                    remove_ref = FALSE,
                    table_text_size = 4,
                    title_text_size = 14,
                    random_effect = NULL,
                    factorlist = NULL,
                    glmfit = NULL,
                    confint_type = NULL,
                    breaks = NULL,
                    column_space = c(-0.5, 0, 0.5),
                    dependent_label = "Death",
                    prefix = "",
                    suffix = ": OR (95% CI, p-value)",
                    table_opts = NULL,
                    plot_opts = list(
                    ggplot2::xlab("OR, 95% CI"),
                    ggplot2::theme(
                    axis.title = ggplot2::element_text(size = 12)
                    )
                    )
                    )



# Other Codes



## arsenal


tab1 <- arsenal::tableby(~ Age + Sex, data = deneme)

results <- summary(tab1)


# results$object
# results$control
# results$totals
# results$hasStrata
# results$text
# results$pfootnote
# results$term.name
# 
# tab1$Call
# 
# tab1$control

tab1$tables # this is where results lie





## define survival time


mydata$int <- lubridate::interval(
  lubridate::ymd(mydata$SurgeryDate),
  lubridate::ymd(mydata$LastFollowUpDate)
  )
mydata$OverallTime <- lubridate::time_length(mydata$int, "month")
mydata$OverallTime <- round(mydata$OverallTime, digits = 1)





## Multivariate Analysis Survival



library(finalfit)
library(survival)
explanatoryMultivariate <- explanatoryKM
dependentMultivariate <- dependentKM

mydata %>%
  finalfit(dependentMultivariate, explanatoryMultivariate) -> tMultivariate

knitr::kable(tMultivariate, row.names=FALSE, align=c("l", "l", "r", "r", "r", "r"))


# Find arguments in yaml

list_of_yaml <- c(
    list.files(path = "~/histopathRprojects/ClinicoPath-Jamovi--prep/jmv",
               pattern = "\\.yaml$",
               full.names = TRUE,
               all.files = TRUE,
               include.dirs = TRUE,
               recursive = TRUE
    )
)


text_of_yaml_yml <- purrr::map(
    .x = list_of_yaml,
    .f = readLines
)

text_of_yaml_yml <- as.vector(unlist(text_of_yaml_yml)) 

arglist <-
    stringr::str_extract(
        string = text_of_yaml_yml, 
        pattern = 
            "([[:alnum:]]*):"
    )

arglist <- arglist[!is.na(arglist)]
arglist <- unique(arglist)
arglist <- gsub(pattern = ":", # remove some characters
                    replacement = "",
                    x = arglist)
arglist <- trimws(arglist) # remove whitespace

cat(arglist, sep = "\n")


#
#                 # tUni_df_descr <- paste0("When ",
#                 #                         tUni_df$dependent_surv_overall_time_outcome[1],
#                 #                         " is ",
#                 #                         tUni_df$x[2],
#                 #                         ", there is ",
#                 #                         tUni_df$hr_univariable[2],
#                 #                         " times risk than ",
#                 #                         "when ",
#                 #                         tUni_df$dependent_surv_overall_time_outcome[1],
#                 #                         " is ",
#                 #                         tUni_df$x[1],
#                 #                         "."
#                 # )
#
#                 # results5 <- tUni_df_descr



boot::melanoma
rio::export(x = boot::melanoma, file = "data/melanoma.csv")

survival::colon
rio::export(x = survival::colon, file = "data/colon.csv")

# BreastCancerData <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data"
# 
# BreastCancerNames <- "https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.names"
# 
# BreastCancerData <- read.csv(file = BreastCancerData, header = FALSE,
#                 col.names = c("id","CT", "UCSize", "UCShape", "MA", "SECS", "BN", "BC", "NN","M", "diagnosis") )

library(mlbench)

data("BreastCancer")
BreastCancer

rio::export(x = BreastCancer, file = "data/BreastCancer.csv")



deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))
# names(deneme)

mypairwise <-  survminer::pairwise_survdiff(
                            formula = survival::Surv(OverallTime, Outcome) ~ TStage,
                            data = deneme,
                            p.adjust.method = "BH"
                            )


mypairwise2 <- as.data.frame(mypairwise[["p.value"]]) %>% 
  tibble::rownames_to_column()

mypairwise2 %>% 
  tidyr::pivot_longer(cols = -rowname) %>% 
  dplyr::filter(complete.cases(.)) %>% 
  dplyr::mutate(description =
                            glue::glue(
                                "The comparison between {rowname} and {name} has a p-value of {round(value, 2)}."
                            )
                    ) %>% 
                    dplyr::select(description) %>%
                    dplyr::pull() -> mypairwisedescription

mypairwisedescription <- unlist(mypairwisedescription)

mypairwisedescription <- c(
"In the pairwise comparison of",
mypairwisedescription)



            # mydata <- self$data

            # mydep <- self$data[[self$options$dep]]
            # mygroup <- self$data[[self$options$group]]
            #
            #
            # plotData <- data.frame(gr = mygroup, dp = jmvcore::toNumeric(mydep))
            # plotData <- jmvcore::naOmit(plotData)
            #
            # image <- self$results$plot
            #
            # image$setState(plotData)


            # self$results$text1$setContent(plotData)


            # mydepType <- data.frame(vclass = class(mydep),
            #                         vtypeof = typeof(mydep),
            #                         vordered = is.ordered(mydep),
            #                         vfactor = is.factor(mydep),
            #                         vnumeric = is.numeric(mydep),
            #                         vdouble = is.double(mydep),
            #                         vcharacter = is.character(mydep),
            #                         vdate = lubridate::is.Date(mydep),
            #                         vdate2 = is.na.POSIXlt(mydep)
            #                         )
            # mygroupType <- class(mygroup)
            # variableTypes <- list(mydepType, mygroupType)
            # self$results$text1$setContent(variableTypes)

            # plotData <- image$state


            # https://indrajeetpatil.github.io/ggstatsplot/
            # ggbetweenstats    violin plots    for comparisons between groups/conditions
            # ggwithinstats     violin plots    for comparisons within groups/conditions
            #
            # ggdotplotstats    dot plots/charts    for distribution about labeled numeric variable
            #
            # ggbarstats    bar charts  for categorical data
            #
            # ggscatterstats    scatterplots    for correlations between two variables

            # http://corybrunson.github.io/ggalluvial/


            # plot <- ggplot(plotData, aes(x = gr,
            #                              y = dp)) +
            #     geom_point()

            # plot <- plotData %>%
            #     ggstatsplot::ggbetweenstats(
            #         x = gr,
            #         y = dp
            #         )

library(readr)
BreastCancer <- read_csv("data/BreastCancer.csv")
View(BreastCancer)



mytarget <- "Class"
myvars <- c("Cl.thickness",
            "Cell.size",
            "Cell.shape",
            "Marg.adhesion",
            "Epith.c.size",
            "Bare.nuclei",
            "Bl.cromatin",
            "Normal.nucleoli",
            "Mitoses")

mydata <- BreastCancer %>% 
    select(mytarget, myvars)

formula <- jmvcore::constructFormula(terms = mytarget)

formula <- paste(formula, '~ .')

formula <- as.formula(formula)

 # Create an FFTrees object from the data
 FFTrees.fft <- FFTrees::FFTrees(
     formula = formula,
     data = mydata
     )

 # Plot the best tree applied to the test data
 plot2 <- plot(FFTrees.fft,
      data = mydata
      # ,
      # main = "Heart Disease",
      # decision.labels = c("Healthy", "Disease")
                 )


devtools::install(upgrade = FALSE, quick = TRUE)


deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))


ClinicoPath::statsplotbetween(
    data = deneme,
    dep = LVI,
    group = PNI)

myirr <- data.frame(
          Rater1 = c(0L,1L,1L,0L,0L,0L,1L,1L,1L,0L,1L,
                 1L,1L,1L,1L,0L,NA,1L,1L,0L,0L,1L,1L,1L,1L,1L,0L,
                 1L,1L,1L,1L,0L,1L,1L,1L,1L,1L,0L,0L,1L,1L,1L,
                 1L,1L,0L,1L,1L,1L,0L,0L,1L,1L,1L,0L,1L,1L,1L,0L,
                 1L,1L,0L,1L,0L,1L,1L,0L,0L,1L,0L,1L,1L,1L,0L,0L,
                 0L,0L,1L,1L,1L,0L,0L,1L,1L,1L,1L,0L,0L,0L,1L,0L,
                 0L,1L,1L,0L,1L,1L,0L,1L,1L,0L,1L,1L,0L,1L,1L,
                 0L,1L,1L,1L,0L,1L,1L,1L,0L,1L,1L,0L,0L,1L,0L,1L,
                 1L,1L,0L,1L,1L,1L,1L,1L,1L,1L,1L,0L,1L,1L,1L,1L,
                 1L,1L,1L,1L,1L,1L,0L,1L,1L,1L,1L,1L,1L,1L,0L,0L,
                 1L,0L,1L,1L,1L,1L,1L,0L,0L,1L,1L,1L,1L,1L,0L,
                 0L,0L,1L,1L,0L,1L,1L,0L,1L,0L,1L,1L,1L,0L,1L,1L,
                 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,
                 0L,0L,1L,1L,1L,1L,0L,0L,1L,1L,0L,1L,1L,1L,0L,1L,
                 0L,1L,1L,1L,1L,0L,0L,0L,0L,1L,0L,1L,1L,1L,0L,
                 0L,1L,1L,1L,0L,1L,0L,0L,0L,1L,1L,1L,0L,1L,0L,0L,
                 0L,1L,1L),
          Rater2 = c(0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,
                 0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,0L,1L,1L,1L,0L,
                 1L,1L,1L,1L,0L,1L,1L,1L,1L,1L,0L,0L,1L,1L,1L,
                 1L,1L,0L,1L,1L,1L,0L,0L,1L,1L,1L,0L,1L,1L,1L,0L,
                 1L,1L,0L,1L,0L,1L,1L,0L,0L,1L,0L,1L,1L,1L,0L,0L,
                 0L,0L,1L,1L,1L,0L,0L,1L,1L,1L,1L,0L,0L,0L,1L,0L,
                 0L,1L,1L,0L,1L,1L,0L,1L,1L,0L,1L,1L,0L,1L,1L,
                 0L,1L,1L,1L,0L,1L,1L,1L,0L,1L,1L,0L,0L,1L,0L,1L,
                 1L,1L,0L,1L,1L,1L,1L,1L,1L,1L,1L,0L,1L,1L,1L,1L,
                 1L,1L,1L,1L,1L,1L,0L,1L,1L,1L,1L,1L,1L,1L,0L,0L,
                 1L,0L,1L,1L,1L,1L,1L,0L,0L,1L,1L,1L,1L,1L,0L,
                 0L,0L,1L,1L,0L,1L,1L,0L,1L,0L,1L,1L,1L,0L,1L,1L,
                 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,
                 0L,0L,1L,1L,1L,1L,0L,0L,1L,1L,0L,1L,1L,1L,1L,1L,
                 1L,1L,1L,1L,1L,1L,1L,1L,1L,1L,0L,1L,1L,1L,0L,
                 0L,1L,1L,1L,0L,1L,0L,0L,0L,1L,1L,1L,0L,1L,0L,0L,
                 0L,1L,1L)
)

myirr <- myirr %>% 
    dplyr::mutate(
        RaterA = dplyr::case_when(
            Rater1 == 0 ~ "Negative",
            Rater1 == 1 ~ "Positive"
        )
    ) %>% 
    dplyr::mutate(
        RaterB = dplyr::case_when(
            Rater2 == 0 ~ "Negative",
            Rater2 == 1 ~ "Positive"
        )
    ) %>% 
    dplyr::select(RaterA, RaterB) %>% 
    mutate(RaterA = as.factor(RaterA)) %>% 
    mutate(RaterB = as.factor(RaterB))

table <- myirr %$% 
table(RaterA, RaterB)

mymatrix <- caret::confusionMatrix(table, positive = "Positive")
mymatrix

caret::sensitivity(table, positive = "Positive")


mymatrix2 <- caret::confusionMatrix(table, positive = "Positive", prevalence = 0.25)
mymatrix2


 dat <- as.table(
                matrix(c(670,202,74,640),
                       nrow = 2,
                       byrow = TRUE)
                )

            colnames(dat) <- c("Dis+","Dis-")
            rownames(dat) <- c("Test+","Test-")

            rval <- epiR::epi.tests(dat, conf.level = 0.95)

            rval <- list(
                dat,
                rval,
                print(rval),
                summary(rval)
                         )

devtools::install(upgrade = FALSE, quick = TRUE)
library(dplyr)

deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

ratings <- deneme %>% 
    dplyr::select(LVI, PNI, Age, ID)


f <- unlist(lapply(ratings, class))

any(f == "numeric")

all(f == "numeric")


xtitle <- names(ratings)[1]
ytitle <- names(ratings)[2]

result <- table(ratings[,1], ratings[,2],
                dnn = list(xtitle, ytitle))

table(ratings)



result1 <- irr::agree(ratings)


result2 <- irr::kappa2(ratings)


ClinicoPath::agreement(
    data = deneme,
    vars = c(LVI,PNI)
)


result2 <- irr::kappam.fleiss(
                    ratings = ratings,
                    exact = FALSE,
                    detail = TRUE)




deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

mytree <- vtree::vtree(deneme, "LVI PNI")

# write(mytree[["x"]][["diagram"]], 
#       file = here::here("/tododata/trial1.gv"))

# DiagrammeR::grViz(diagram = here::here("/tododata/trial1.gv"))

diagram <- mytree[["x"]][["diagram"]]

mytree2 <- DiagrammeR::grViz(diagram = diagram)


print(mytree2)



# Packages for Development





## rpkgtools


devtools::install_github("IndrajeetPatil/rpkgtools")



## available


Check if a package name is available to use https://docs.ropensci.org/available


https://github.com/r-lib/available



available::available("clinicopath")
available::available("lens2r")





## bench


High Precision Timing of R Expressions http://bench.r-lib.org/

https://github.com/r-lib/bench






## desc


Manipulate DESCRIPTION files
https://github.com/r-lib/desc



## pkgverse

pkgverse: Build a Meta-Package Universe
https://pkgverse.mikewk.com/



## pkgbuild

pkgbuild: Find Tools Needed to Build R Packages
https://github.com/r-lib/pkgbuild


## pkgload

pkgload: Simulate Package Installation and Attach
https://github.com/r-lib/pkgload


## rcmdcheck

rcmdcheck: Run 'R CMD check' from 'R' and Capture Results
https://github.com/r-lib/rcmdcheck




## remotes


## sessioninfo

Print Session Information

https://github.com/r-lib/sessioninfo



## "covr




## "exampletestr


## "covrpage",


## "gramr",


## "lintr",


## "goodpractice",


## "pkgdown",


## "usethis",


## "testthat",


## "spelling",


## "RTest",

https://towardsdatascience.com/rtest-pretty-testing-of-r-packages-50f50b135650


## "rhub",


## "roxygen2",


## "sinew",


## "styler",



## "vdiffr"




## "attachment (https://github.com/ThinkR-open/attachment)
## "covrpage (https://github.com/yonicd/covrpage)
## "defender (https://github.com/ropenscilabs/defender)
## "gramr (https://github.com/ropenscilabs/gramr)
## "packagemetrics (https://github.com/ropenscilabs/packagemetrics)
## "pRojects (https://github.com/lockedata/pRojects)
## "revdepcheck (https://github.com/r-lib/revdepcheck)
## "roxygen2Comment (https://github.com/csgillespie/roxygen2Comment)
## "roxygen2md (https://github.com/r-lib/roxygen2md)
## "testdown (https://github.com/ThinkR-open/testdown)
## "tic (https://github.com/ropenscilabs/tic)





            # Table1 <- table(mydata[[testVariable]], mydata[[goldVariable]])


            # Table1 <- mydata %>%
            #     janitor::tabyl(.data[[testVariable]], .data[[goldVariable]]) %>%
            #     janitor::adorn_totals(dat = ., where = c("row", "col")) %>%
            #     janitor::adorn_percentages(dat = ., denominator = "row") %>%
            #     janitor::adorn_percentages(dat = ., denominator = "col") %>%
            #     janitor::adorn_pct_formatting(dat = ., rounding = "half up", digits = 1) %>%
            #     janitor::adorn_ns(dat = .) %>%
            #     janitor::adorn_title("combined")
            # results1 <- Table1

                # results1 <- summary(km_fit)$table

                # km_fit_median_df <- summary(km_fit)
                # km_fit_median_df <- as.data.frame(km_fit_median_df$table) %>%
                #     janitor::clean_names(dat = ., case = "snake") %>%
                #     tibble::rownames_to_column(.data = .)

                # results1 <- tibble::as_tibble(results1,
                #                              .name_repair = "minimal") %>%
                #     janitor::clean_names(dat = ., case = "snake") %>%
                #     tibble::rownames_to_column(.data = ., var = self$options$explanatory)


table2 <- matrix(c(80, 20, 30, 70), nrow = 2, ncol = 2, byrow = TRUE, dimnames = list(c("Positive", "Negative"), c("Positive","Negative")))

            table3 <- as.table(table2)

            names(attributes(table3)$dimnames) <- c("Test","Gold Standart")

caretresult <- caret::confusionMatrix(table3, mode = "everything")



table3 <- matrix(c(80L, 20L, 25L, 30L, 70L, 75L), nrow = 2, ncol = 3, byrow = TRUE)


# RVAideMemoire::chisq.multcomp() RVAideMemoire::fisher.multcomp()

result1 <- RVAideMemoire::chisq.multcomp(table3)

result1 <- result1[["p.value"]]


result1 <- as.data.frame(result1) %>%
                                tibble::rownames_to_column()

result1 <- result1 %>%
    tidyr::pivot_longer(cols = -rowname) %>%
    dplyr::filter(complete.cases(.))




myfun <- function(i,j) {
    if(!is.na(result1[i,j])){
    paste0(    
dimnames(result1)[[1]][i],
" vs ",
dimnames(result1)[[2]][j],
" p= ",    
result1[i,j])
    }
}

for (i in 1:dim(result1)[1]) {
for (j in 1:dim(result1)[2]) {
    des <- myfun(i,j)
    if(!is.null(des)) print(des)
}
}


myfun1 <- function(i,j) {
    if(!is.na(result1[i,j])){
dimnames(result1)[[1]][i]
    }
}


for (i in 1:dim(result1)[1]) {
for (j in 1:dim(result1)[2]) {
    des <- myfun1(i,j)
    if(!is.null(des)) print(des)
}
}





myfun(3,3)

myfun(1,2)


dimnames(result1)[[1]][2]


RVAideMemoire::fisher.multcomp(table3)


# rmngb::pairwise.chisq.test(x, ...)  rmngb::pairwise.fisher.test(x, ...)


library(rmngb)
x <- sample(1:2, 1e3, TRUE)
g <- sample(1:4, 1e3, TRUE)
result2 <- rmngb::pairwise.chisq.test(x, g)
tab <- table(g, x)

resultrmngb <- rmngb::pairwise.fisher.test(tab, p.adj = "bonf")

result2[["p.value"]]
resultrmngb[["p.value"]]

rmngb::pairwise.chisq.test(tab)





 
formula <- jmvcore::constructFormula(terms = self$options$vars)
formula <- paste('~', formula)
formula <- as.formula(formula)
table1 <- arsenal::tableby(formula, self$data,
total = TRUE,
digits = 1,
digits.count = 1
)
myarsenal <- summary(table1, text = "html")
myarsenal <- kableExtra::kable(myarsenal, format = "html",
digits = 1,
escape = TRUE) %>%
kableExtra::kable_styling(kable_input = .,
bootstrap_options = "striped",
full_width = F,
position = "left")



library(dplyr)

deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))


varsName <- c("LVI", "PNI")

tablelist <- list()

                for (i in 1:length(varsName)) {

                    var <- varsName[i]
                    
                    
                    table <- deneme %>%
                        janitor::tabyl(dat = ., var) %>%
                        janitor::adorn_totals("row") %>%
                        janitor::adorn_pct_formatting(dat = .)

                    tablelist[[i]] <- table

                }

tablelist






            data <- self$data

            vars <- self$options$vars

            facs <- self$options$facs

            target <- self$options$target

            # data <- jmvcore::select(data, c(vars, facs, target))


            if ( ! is.null(vars))
            for (var in vars)
                data[[var]] <- jmvcore::toNumeric(data[[var]])

            if ( ! is.null(facs))
            for (fac in facs)
                data[[fac]] <- as.factor(data[[fac]])


            data[[target]] <- as.factor(data[[target]])

            data <- jmvcore::naOmit(data)
            
            
            
            
            

            # TODO

            # todo <- glue::glue(
            #     "This Module is still under development
            #     -
            #     -
            #     "
            # )

            # self$results$todo$setContent(todo)

            # if (nrow(self$data) == 0)
            #     stop('Data contains no (complete) rows')


            # if (is.null(self$options$vars) || is.null(self$options$target))
            #     return()


            # prepare data for explore ----
            # https://cran.r-project.org/web/packages/explore/vignettes/explore.html


            # result1 <- iris %>% explore::explain_tree(target = Species)
            #
            # self$results$text1$setContent(result1)


            # image <- self$results$plot

            # image$setState(plotData)



            # from https://forum.jamovi.org/viewtopic.php?f=2&t=1287
            # library(caret)
            # library(partykit)
            # detach("package:partykit", unload=TRUE)
            # library(party)

            # Conditional Trees

            # set.seed(3456)
            # model <- train(
            #     yvar ~ .,
            #     data = df,
            #     method = 'ctree2',
            #     trControl = trainControl("cv", number = 10, classProbs = FALSE),
            #     tuneGrid = expand.grid(maxdepth = 3, mincriterion = 0.95)
            # )
            # plot(model$finalModel)
            #
            # t(sapply(unique(where(model$finalModel)), function(x) {
            #     n <- nodes(model$finalModel, x)[[1]]
            #     yvar <- df[as.logical(n$weights), "yvar"]
            #     cbind.data.frame("Node" = as.integer(x),
            #                      psych::describe(yvar, quant=c(.25,.50,.75), skew = FALSE))
            # }))
            
            
            
            
            


            # data <- private$.cleanData()

            # vars <- self$options$vars
            # facs <- self$options$facs
            # target <- self$options$target

            # tree1 <- data %>%
            #     explore::explain_tree(target = .data[[target]])




            # if (is.null(self$options$vars) || is.null(self$options$target))
            #     return()


            # varsName <- self$options$vars
            #
            # facsName <- self$options$facs
            #
            # targetName <- self$options$target
            #
            # data <- jmvcore::select(self$data, c(varsName, facsName, targetName))
            #
            # data[[varsName]] <- jmvcore::toNumeric(data[[varsName]])
            #
            # for (fac in facsName)
            #     data[[facsName]] <- as.factor(data[[facsName]])
            #
            # data <- jmvcore::naOmit(data)




            # tree1 <- data %>%
            #     explore::explain_tree(target = .data[[targetName]])


            # plot <- iris %>% explore::explain_tree(target = Species)
            # if (length(self$options$dep) + length(self$options$group) < 2)
            #     return()

            # tree1 <- iris %>% explore::explain_tree(target = Species)
            # iris$is_versicolor <- ifelse(iris$Species == "versicolor", 1, 0)
            # tree2 <- iris %>%
            # dplyr::select(-Species) %>%
            # explore::explain_tree(target = is_versicolor)
            # tree3 <- iris %>%
            # explore::explain_tree(target = Sepal.Length)



library(magrittr)
# devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

mydata <- deneme

varsName <- "Age"

# facsName <- c("LVI", "PNI")

targetName <- "Outcome"

mydata[[targetName]] <- as.factor(mydata[[targetName]])

mydata <- jmvcore::select(mydata, c(varsName, 
                                    # facsName, 
                                    targetName))

mydata <- jmvcore::naOmit(mydata)



explore::explain_tree(data = mydata,
                      target = targetName
                      )

mydata %>%
explore::explain_tree(target = .data[[targetName]])




iris %>% explore::explain_tree(target = Species)




BreastCancer %>%
                dplyr::select(all_of(mytarget), all_of(myvars)) %>%
                explore::explain_tree(target = .data[[mytarget]])




ClinicoPath::tree(
    data = data,
    vars = Age,
    facs = vars(LVI, PNI),
    target = Mortality)


mytarget <- "Class"
myvars <- c("Cl.thickness",
            "Cell.size",
            "Cell.shape",
            "Marg.adhesion",
            "Epith.c.size",
            "Bare.nuclei",
            "Bl.cromatin",
            "Normal.nucleoli",
            "Mitoses")

# mytarget <- jmvcore::composeTerms(mytarget)
# mytarget <- jmvcore::constructFormula(terms = mytarget)



# install.packages("easyalluvial")
library(magrittr)
# devtools::install(upgrade = FALSE, quick = TRUE)
deneme <- readxl::read_xlsx(path = here::here("tododata", "histopathology-template2019-11-25.xlsx"))

mydata <- deneme

var1 <- "TStage"

var2 <- "Grade"

mydata <- jmvcore::select(df = mydata, columnNames = c(var1, var2))

mydata <- jmvcore::naOmit(mydata)

plot <- 
easyalluvial::alluvial_wide( data = mydata
                , max_variables = 5
                , fill_by = 'first_variable'
                , verbose = TRUE
                )

plot %>% 
    easyalluvial::add_marginal_histograms(mydata)


imports <- c( attachment::att_from_rscripts(“./R”, recursive = TRUE) )

attachment::att_to_desc_from_is(path.d = “DESCRIPTION”, imports = imports, normalize = TRUE, add_remotes = TRUE)